Skip to main content

Advertisement

Log in

Engeletin Attenuates Aβ1–42-Induced Oxidative Stress and Neuroinflammation by Keap1/Nrf2 Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a serious neuropathologic disease characterized by aggregation of amyloid-β (Aβ) peptide. Aβ-mediated oxidative stress and neuroinflammation play crucial role in the development of AD. Engeletin is a flavononol glycoside that possesses anti-inflammatory effect. However, the effects of engeletin on AD have not been investigated. In the present study, we investigated the role of engeletin in AD using an in vitro AD model. Murine microglia BV-2 cells were stimulated with Aβ1–42 (5 μM) for 24 h to induce oxidative stress and inflammation. Our results showed that treatment with engeletin suppressed Aβ1–42-induced viability reduction and lactate dehydrogenase (LDH) release in BV-2 cells. Engeletin attenuated Aβ1–42-induced oxidative stress in BV-2 cells, as proved by decreased production of reactive oxygen species (ROS) and malonaldehyde (MDA) and increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Aβ1–42-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression were inhibited by engeletin treatment. Besides, engeletin inhibited Aβ1–42-induced production and mRNA levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6). Engeletin enhanced Aβ1–42-induced activation of Kelch-like ECH-associated protein 1 (Keap1)/nuclear transcription factor E2-related factor 2 (Nrf2) signaling pathway in BV-2 cells. Inhibition of Keap1/Nrf2 signaling pathway reversed the inhibitory effects of engeletin on Aβ1–42-induced oxidative stress and inflammation in BV-2 cells. Taken together, engeletin attenuated Aβ1–42-induced oxidative stress and inflammation in BV-2 cells via regulating the of Keap1/Nrf2 pathway. These findings indicated that engeletin might be served as a therapeutic agent for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Calderon-Garciduenas, A.L., and C. Duyckaerts. 2017. Alzheimer disease. Handbook of Clinical Neurology 145: 325–337.

    Article  Google Scholar 

  2. Gouras, G.K., T.T. Olsson, and O. Hansson. 2015. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics 12: 3–11.

    Article  CAS  Google Scholar 

  3. Reiss, A.B., H.A. Arain, M.M. Stecker, N.M. Siegart, and L.J. Kasselman. 2018. Amyloid toxicity in Alzheimer’s disease. Reviews in the Neurosciences 29: 613–627.

    Article  CAS  Google Scholar 

  4. Nazem, A., R. Sankowski, M. Bacher, and Y. Al-Abed. 2015. Rodent models of neuroinflammation for Alzheimer’s disease. Journal of Neuroinflammation 12: 74.

    Article  Google Scholar 

  5. Minter, M.R., J.M. Taylor, and P.J. Crack. 2016. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. Journal of Neurochemistry 136: 457–474.

    Article  CAS  Google Scholar 

  6. Viola, K.L., and W.L. Klein. 2015. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathologica 129: 183–206.

    Article  CAS  Google Scholar 

  7. Tian, Q., G. Wang, Y. Zhang, F. Zhang, L. Yang, Z. Liu, and Z. Shen. 2019. Engeletin inhibits lipopolysaccharide/d-galactosamine-induced liver injury in mice through activating PPAR-γ. Journal of Pharmacological Sciences 140: 218–222.

    Article  CAS  Google Scholar 

  8. Jiang, X., L. Chen, Z. Zhang, Y. Sun, X. Wang, and J. Wei. 2018. Protective and therapeutic effects of engeletin on LPS-induced acute lung injury. Inflammation 41: 1259–1265.

    Article  CAS  Google Scholar 

  9. Wu, H., G. Zhao, K. Jiang, C. Li, C. Qiu, and G. Deng. 2016. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-κB activation. Journal of Agricultural and Food Chemistry 64: 6171–6178.

    Article  CAS  Google Scholar 

  10. Li, Q., L. Chen, X. Liu, X. Li, Y. Cao, Y. Bai, and F. Qi. 2018. Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway. Journal of Cellular Biochemistry 119: 7053–7062.

    Article  CAS  Google Scholar 

  11. Conti, A., M. Miscusi, S. Cardali, A. Germanò, H. Suzuki, S. Cuzzocrea, and F. Tomasello. 2007. Nitric oxide in the injured spinal cord: Synthases cross-talk, oxidative stress and inflammation. Brain Research Reviews 54: 205–218.

    Article  CAS  Google Scholar 

  12. Lu, M.C., J.A. Ji, Z.Y. Jiang, and Q.D. You. 2016. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: An update. Medicinal Research Reviews 36: 924–963.

    Article  CAS  Google Scholar 

  13. Abdel-Hafiz, L., A. Muller-Schiffmann, C. Korth, B. Fazari, O.Y. Chao, S. Nikolaus, S. Schable, A. Herring, K. Keyvani, V. Lamounier-Zepter, J.P. Huston, and M.A. de Souza Silva. 2018. Aβ dimers induce behavioral and neurochemical deficits of relevance to early Alzheimer’s disease. Neurobiology of Aging 69: 1–9.

    Article  CAS  Google Scholar 

  14. Perez, S.E., M.A. Raghanti, P.R. Hof, L. Kramer, and E.J. Mufson. 2013. Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). Journal of Comparative Neurology 521: 4318–4338.

    Article  CAS  Google Scholar 

  15. Rhein, V., G. Baysang, S. Rao, F. Meier, A. Bonert, F. Muller-Spahn, and A. Eckert. 2009. Amyloid-β leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cellular and Molecular Neurobiology 29: 1063–1071.

    Article  CAS  Google Scholar 

  16. Swerdlow, R.H. 2012. Mitochondria and cell bioenergetics: Increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxidants & Redox Signaling 16: 1434–1455.

    Article  CAS  Google Scholar 

  17. Elkamhawy, A., J.E. Park, A.H.E. Hassan, A.N. Pae, J. Lee, B.G. Park, and E.J. Roh. 2018. Synthesis and evaluation of 2-(3-arylureido)pyridines and 2-(3-arylureido)pyrazines as potential modulators of Aβ-induced mitochondrial dysfunction in Alzheimer’s disease. European Journal of Medicinal Chemistry 144: 529–543.

    Article  CAS  Google Scholar 

  18. Sadigh-Eteghad, S., B. Sabermarouf, A. Majdi, M. Talebi, M. Farhoudi, and J. Mahmoudi. 2015. Amyloid-β: A crucial factor in Alzheimer’s disease. Medical Principles and Practice 24: 1–10.

    Article  Google Scholar 

  19. Schieber, M., and N.S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24: R453–R462.

    Article  CAS  Google Scholar 

  20. Kamat, P.K., A. Kalani, S. Rai, S. Swarnkar, S. Tota, C. Nath, and N. Tyagi. 2016. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: Understanding the therapeutics strategies. Molecular Neurobiology 53: 648–661.

    Article  CAS  Google Scholar 

  21. Webers, A., M.T. Heneka, and P.A. Gleeson. 2019. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunology Cell Biology 98: 28–41.

    Article  Google Scholar 

  22. Shin, S.J., S.G. Jeon, J.I. Kim, Y.O. Jeong, S. Kim, Y.H. Park, S.K. Lee, H.H. Park, S.B. Hong, S. Oh, J.Y. Hwang, H.. Kim, H.H. Park, Y. Nam, Y.Y. Lee, J.J. Kim, S.H. Park, J.S. Kim, and M. Moon. 2019. Red ginseng attenuates Aβ-induced mitochondrial dysfunction and Aβ-mediated pathology in an animal model of Alzheimer’s disease. International Journal of Molecular Sciences 20: 3030.

  23. Ma, W., M. Wu, S. Zhou, Y. Tao, Z. Xie, and Y. Zhong. 2018. Reduced smoothened level rescues Aβ-induced memory deficits and neuronal inflammation in animal models of Alzheimer’s disease. Journal of Genetics and Genomics 45: 237–246.

    Article  Google Scholar 

  24. Wu, X., J. Kosaraju, and K.Y. Tam. 2018. Anti-neuroinflammatory effects of SLOH in Aβ-induced BV-2 microglial cells and 3xTg-AD mice involve the inhibition of GSK-3β. Neuroscience Letters 687: 207–215.

    Article  CAS  Google Scholar 

  25. Cui, B., S.L. Zhang, Y.T. Wang, and Y.Y. Guo. 2019. Farrerol attenuates β-amyloid-induced oxidative stress and inflammation through Nrf2/Keap1 pathway in a microglia cell line. Biomedicine & Pharmacotherapy 109: 112–119.

    Article  CAS  Google Scholar 

  26. Shaw, P., and A. Chattopadhyay. 2020. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. Journal of Cellular Physiology 235: 3119–3130.

    Article  CAS  Google Scholar 

  27. Kaspar, J.W., S.K. Niture, and A.K. Jaiswal. 2009. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine 47: 1304–1309.

    Article  CAS  Google Scholar 

  28. Kobayashi, M., and M. Yamamoto. 2005. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxidants & Redox Signaling 7: 385–394.

    Article  CAS  Google Scholar 

  29. Motohashi, H., and M. Yamamoto. 2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine 10: 549–557.

    Article  CAS  Google Scholar 

  30. Yamazaki, H., K. Tanji, K. Wakabayashi, S. Matsuura, and K. Itoh. 2015. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases. Pathology International 65: 210–219.

    Article  CAS  Google Scholar 

  31. Bahn, G., and D.G. Jo. 2019. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2. Neuromolecular Medicine 21: 1–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwen Zhi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhixiong Huang, Hu Ji are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Ji, H., Shi, J. et al. Engeletin Attenuates Aβ1–42-Induced Oxidative Stress and Neuroinflammation by Keap1/Nrf2 Pathway. Inflammation 43, 1759–1771 (2020). https://doi.org/10.1007/s10753-020-01250-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01250-9

KEY WORDS

Navigation