Skip to main content

Advertisement

Log in

Long Non-coding RNA THRIL Mediates Cell Growth and Inflammatory Response of Fibroblast-Like Synoviocytes by Activating PI3K/AKT Signals in Rheumatoid Arthritis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The present study explored the possible functions and the underlying mechanism of tumor necrosis factor-α (TNF-α) and heterogeneous nuclear ribonucleoprotein L (hnRNPL)–related immunoregulatory lncRNA plasmacytoma variant translocation 1 (THRIL) in rheumatoid arthritis (RA). Serum samples were collected from patients with RA. Primary fibroblast-like synoviocytes (FLSs) were separated from synovial tissues and cultured for subsequent cell experiments by transfecting different vectors. The qRT-PCR analysis was employed for evaluating the levels of THRIL in the serum. Enzyme-linked immunosorbent assay (ELISA) analysis was employed to detect the levels of inflammatory cytokines. MTT assay and Annexin V-FITC/PI apoptosis assay were used to evaluate the cell viability and apoptosis, respectively. Besides, the levels of the apoptotic proteins and the pathway-related proteins were measured by western blotting. Pearson’s correlation analysis was used to assess the correlation between THRIL and clinical parameters. THRIL was overexpressed in the blood of patients with RA as compared with healthy participants (p < 0.05). The THRIL levels in the RA blood sample were positively associated with TNF-α levels, DAS 28, and ESR (p < 0.001). TNF-α treatment significantly inhibited cell viability and enhanced cell apoptosis. Furthermore, it elevated the levels of IL-1β and MMP-3 (p < 0.05), whereas the suppression of THRIL reversed these effects in TNF-α-treated RA-FLSs (p < 0.05). Moreover, the reduced THRIL remarkably reduced the expression of p-PI3K and p-AKT (p < 0.05) in TNF-α-treated RA-FLSs. The present study revealed that THRIL could regulate cell growth and inflammatory response of FLSs by activating the PI3K/AKT signaling pathway, subsequently playing important roles in promoting the occurrence and development of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233 (1): 233–255.

    Article  CAS  Google Scholar 

  2. Bottini, Nunzio, and Gary S. Firestein. 2012. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nature Reviews Rheumatology 9 (1): 24–33.

    Article  Google Scholar 

  3. Carpenter, S., D. Aiello, M.K. Atianand, E.P. Ricci, P. Gandhi, L.L. Hall, M. Byron, B. Monks, M. Henrybezy, and J.B. Lawrence. 2013. A long noncoding RNA induced by TLRs mediates both activation and repression of immune response genes. Science 341 (6147): 789–792.

    Article  CAS  Google Scholar 

  4. Choy, Ernest H.S., and Gabriel S. Panayi. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis — NEJM. New England Journal of Medicine 344 (12): 907–916.

    Article  CAS  Google Scholar 

  5. Congrains, Ada, Kei Kamide, Ryousuke Oguro, Osamu Yasuda, Keishi Miyata, Eiichiro Yamamoto, Tatsuo Kawai, Hiroshi Kusunoki, Hiroko Yamamoto, and Yasushi Takeya. 2012. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220 (2): 449–455.

    Article  CAS  Google Scholar 

  6. Fan, L., Q. Wang, R. Liu, M. Zong, D. He, H. Zhang, Y. Ding, and J. Ma. 2012. Citrullinated fibronectin inhibits apoptosis and promotes the secretion of pro-inflammatory cytokines in fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Research & Therapy 14 (6): 1–9.

    Article  Google Scholar 

  7. Gibofsky, A. 2012. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. American Journal of Managed Care 18 (13 Suppl): 295–302.

    Google Scholar 

  8. Gibofsky, A. 2014. Epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis: a synopsis. American Journal of Managed Care 20 (7 Suppl): 128–135.

    Google Scholar 

  9. Gupta, S.C., N. Awasthee, V. Rai, S. Chava, V. Gunda, and K.B. Challagundla. 2019. Long non-coding RNAs and nuclear factor-kappaB crosstalk in cancer and other human diseases. Biochimica Et Biophysica Acta. Reviews on Cancer 1873 (1): 188316. https://doi.org/10.1016/j.bbcan.2019.188316.

    Article  CAS  PubMed  Google Scholar 

  10. Guttman, M., I. Amit, M. Garber, C. French, M.F. Lin, D. Feldser, M. Huarte, O. Zuk, B.W. Carey, and J.P. Cassady. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (7235): 223–227.

    Article  CAS  Google Scholar 

  11. Heward, J.A., and M.A. Lindsay. 2014. Long non-coding RNAs in the regulation of the immune response. Trends in Immunology 35 (9): 408–419.

    Article  CAS  Google Scholar 

  12. Johnson, Rory. 2012. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiology of Disease 46 (2): 245–254.

    Article  CAS  Google Scholar 

  13. Koenders, M.I., and Van Den Berg Wb. 2015. Novel therapeutic targets in rheumatoid arthritis. Trends in Pharmacological Sciences 36 (4): 189–195.

    Article  CAS  Google Scholar 

  14. Korb, A., H. Pavenstädt, and T. Pap. 2009. Cell death in rheumatoid arthritis. Apoptosis 14 (4): 447–454.

    Article  Google Scholar 

  15. Lawson, J., R. Singh, M. Hultner, K. Ariyur, and L. Martin. 2012. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31 (43): 4577–4587.

    Article  Google Scholar 

  16. Li, Zhonghan, and Tariq M. Rana. 2014. Decoding the noncoding: prospective of lncRNA-mediated innate immune regulation. RNA Biology 11 (8): 979–985.

    Article  Google Scholar 

  17. Liang, Kun, Ye Yu, Yong Wang, Jianfeng Zhang, and Chaoqian Li. 2014. Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. Journal of the Neurological Sciences 344 (1): 100–104.

    Article  CAS  Google Scholar 

  18. Liu, Q., X. Zhang, L. Dai, X. Hu, J. Zhu, L. Li, C. Zhou, and Y. Ao. 2014. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis & Rheumatology 66 (4): 969–978.

    Article  CAS  Google Scholar 

  19. Long, C.L., and M.B. Humphrey. 2012. Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. Bonekey Reports 1–7. https://doi.org/10.1038/bonekey.2012.59.

  20. Luo, J., B.D. Manning, and L.C. Cantley. 2003. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4 (4): 257–262.

    Article  CAS  Google Scholar 

  21. Malemud, C.J. 2015. The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future Medicinal Chemistry 7 (9): 1137–1147. https://doi.org/10.4155/fmc.15.55.

    Article  CAS  PubMed  Google Scholar 

  22. Mandl, P., P.V. Balint, Y. Brault, M. Backhaus, M.A. D'Agostino, W. Grassi, D. Heijde, E. Miguel, R.J. Wakefield, and I. Logeart. 2013. Clinical and ultrasound-based composite disease activity indices in rheumatoid arthritis: results from a multicenter, randomized study. Arthritis Care & Research 65 (6): 879–887.

    Article  CAS  Google Scholar 

  23. Mcinnes, I.B., and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology 7 (6): 429–442.

    Article  CAS  Google Scholar 

  24. Moharamoghli, M., V. Hassan-Zadeh, E. Dolatshahi, Z. Alizadeh, and A. Farazmand. 2019. The expression of GAS5, THRIL, and RMRP lncRNAs is increased in T cells of patients with rheumatoid arthritis. Clinical Rheumatology 38 (11): 3073–3080. https://doi.org/10.1007/s10067-019-04694-z.

    Article  PubMed  Google Scholar 

  25. Pang, K.C., M.E. Dinger, T.R. Mercer, L. Malquori, S.M. Grimmond, W. Chen, and J.S. Mattick. 2009. Genome-wide identification of long noncoding RNAs in CD8+ T cells. Journal of Immunology 182 (12): 7738–7748.

    Article  CAS  Google Scholar 

  26. Peng, X., L. Gralinski, C.D. Armour, M.T. Ferris, M.J. Thomas, S. Proll, B.G. Bradeltretheway, M.J. Korth, J.C. Castle, and M.C. Biery. 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. Mbio 1 (5): e00206–e00210.

    Article  CAS  Google Scholar 

  27. Sheng, C., F. Hu, and L. Wu. 2019. Geniposide alleviates hypoxia-induced injury by down-regulation of lncRNA THRIL in rat cardiomyocytes derived H9c2 cells. European Journal of Pharmacology 854: 28–38. https://doi.org/10.1016/j.ejphar.2019.03.058.

    Article  CAS  PubMed  Google Scholar 

  28. Shi, Xuefei, Ming Sun, Hongbing Liu, Yanwen Yao, and Yong Song. 2013. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Letters 339 (2): 159–166.

    Article  CAS  Google Scholar 

  29. Song, J., D. Kim, J. Han, Y. Kim, M. Lee, and E.J. Jin. 2015. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clinical and Experimental Medicine 15 (1): 121–126.

    Article  CAS  Google Scholar 

  30. Vaux, D., S. Cory, and J. Adams. 1988. Bcl-2 and cell survival. Nature 335: 440–442.

    Article  CAS  Google Scholar 

  31. Viatte, Sebastien, Darren Plant, and Soumya Raychaudhuri. 2013. Genetics and epigenetics of rheumatoid arthritis. Nature Reviews Rheumatology 9 (3): 141–153.

    Article  CAS  Google Scholar 

  32. Wu, Guo Cui, Hai Feng Pan, Rui Xue Leng, De Guang Wang, Xiang Pei Li, Xiao Mei Li, and Dong Qing Ye. 2015. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmunity Reviews 14 (9): 798–805.

    Article  CAS  Google Scholar 

  33. Xu, C.Q., B.J. Liu, J.F. Wu, Y.C. Xu, X.H. Duan, Y.X. Cao, and J.C. Dong. 2010. Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway. European Journal of Pharmacology 642 (1–3): 146–153.

    Article  CAS  Google Scholar 

  34. Xue, J.F., Z.M. Shi, J. Zou, and X.L. Li. 2017. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomedicine & Pharmacotherapy 89: 1252–1261. https://doi.org/10.1016/j.biopha.2017.01.130.

    Article  CAS  Google Scholar 

  35. Li, Z., T.C. Chao, K.Y. Chang, N. Lin, V.S. Patil, C. Shimizu, S.R. Head, J.C. Burns, and T.M. Rana. 2013. The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proceedings of the National Academy of Sciences of the United States of America 111 (3): 1002–1007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbin Gong.

Ethics declarations

This study obtained approval from the Ethics Committee of our hospital and all participants signed the written informed consent.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yongjian Liang and He Li are first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Li, H., Gong, X. et al. Long Non-coding RNA THRIL Mediates Cell Growth and Inflammatory Response of Fibroblast-Like Synoviocytes by Activating PI3K/AKT Signals in Rheumatoid Arthritis. Inflammation 43, 1044–1053 (2020). https://doi.org/10.1007/s10753-020-01189-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01189-x

KEY WORDS

Navigation