Skip to main content
Log in

CYTL1 Promotes the Activation of Neutrophils in a Sepsis Model

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

As a novel cytokine, cytokine-like 1 (CYTL1) is a classical secretory protein, and its potential biological function remains to be determined. In this study, we found that expression of CYTL1 was upregulated in neutrophils upon inflammatory stimuli. We demonstrated that CYTL1 enhanced phagocytosis of Escherichia coli by activated neutrophils both in vivo and in vitro through phosphorylation of protein kinase B (Akt). CYTL1-induced chemotactic activity in lipopolysaccharide (LPS) stimulated neutrophils, and the mechanism may be related to CC chemokine receptor 2 (CCR2) mediated action. CYTL1 also increased the release of reactive oxygen species (ROS) in LPS-stimulated neutrophils. These data indicate that upon inflammatory stimulation, neutrophil-derived CYTL1 may play a crucial role in the activation of neutrophils during pathogenic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315: 801–810. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alcamo, A.M., D. Pang, D.A. Bashir, J.A. Carcillo, T.C. Nguyen, and R.K. Aneja. 2019. Role of damage-associated molecular patterns and uncontrolled inflammation in pediatric sepsis-induced multiple organ dysfunction syndrome. J Pediatr Intensive Care 8 (1): 25–31. https://doi.org/10.1055/s-0038-1675639.

    Article  PubMed  Google Scholar 

  3. Cawcutt, K.A., and S.G. Peters. 2014. Severe sepsis and septic shock: clinical overview and update on management. Mayo Clinic Proceedings 89: 1572–1578. https://doi.org/10.1016/j.mayocp.2014.07.009.

    Article  PubMed  Google Scholar 

  4. De La Rica, Suarez, A.F. Gilsanz, and E. Maseda. 2016. Epidemiologic trends of sepsis in western countries. Ann Transl Med 4: 325. https://doi.org/10.21037/atm.2016.08.59.

    Article  Google Scholar 

  5. Minasyan, H. 2019. Sepsis: mechanisms of bacterial injury to the patient. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 27: 19. https://doi.org/10.1186/s13049-019-0596-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shen, X.F., K. Cao, J.P. Jiang, W.X. Guan, and J.F. Du. 2017. Neutrophil dysregulation during sepsis: an overview and update. Journal of Cellular and Molecular Medicine 21: 1687–1697. https://doi.org/10.1111/jcmm.13112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teng, T.S., A.L. Ji, X.Y. Ji, and Y.Z. Li. 2017. Neutrophils and immunity: from bactericidal action to being conquered. Journal of Immunology Research 2017: 9671604. https://doi.org/10.1155/2017/9671604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cavaillon, J.M. 2018. Exotoxins and endotoxins: inducers of inflammatory cytokines. Toxicon 149: 45–53. https://doi.org/10.1016/j.toxicon.2017.10.016.

    Article  CAS  PubMed  Google Scholar 

  9. Sonego, F., F.V. Castanheira, R.G. Ferreira, A. Kanashiro, C.A. Leite, D.C. Nascimento, D.F. Colon, F. Borges Vde, J.C. Alves-Filho, and F.Q. Cunha. 2016. Paradoxical roles of the neutrophil in sepsis: protective and deleterious. Frontiers in Immunology 7: 155. https://doi.org/10.3389/fimmu.2016.00155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lerman, Y.V., and M. Kim. 2015. Neutrophil migration under normal and sepsis conditions. Cardiovascular & Hematological Disorders Drug Targets 15: 19–28. https://doi.org/10.2174/1871529X15666150108113236.

    Article  CAS  Google Scholar 

  11. Kuzmich, N.N., K.V. Sivak, V.N. Chubarev, Y.B. Porozov, T.N. Savateeva-Lyubimova, and F. Peri. 2017. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 5: 34. https://doi.org/10.3390/vaccines5040034.

    Article  CAS  Google Scholar 

  12. Tomczak, A., K. Singh, A.G. Gittis, J. Lee, D.N. Garboczi, and P.M. Murphy. 2017. Biochemical and biophysical characterization of cytokine-like protein 1 (CYTL1). Cytokine 96: 238–246. https://doi.org/10.1016/j.cyto.2017.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, S., V. Kuek, S. Bennett, H. Xu, V. Rosen, and J. Xu. 2019. Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cellular and Molecular Life Sciences 76: 3515–3523. https://doi.org/10.1007/s00018-019-03137-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeon, J., H. Oh, G. Lee, J.H. Ryu, J. Rhee, J.H. Kim, K.H. Chung, W.K. Song, C.H. Chun, and J.S. Chun. 2011. Cytokine-like 1 knock-out mice (Cytl1(−/−)) show normal cartilage and bone development but exhibit augmented osteoarthritic cartilage destruction. Journal of Biological Chemistry 286: 27206–27213. https://doi.org/10.1074/jbc.M111.218065.

    Article  CAS  Google Scholar 

  15. Chao, C., B. Joyce-Shaikh, J. Grein, M. Moshrefi, F. Raoufi, D.M. Laface, T.K. McClanahan, et al. 2011. C17 prevents inflammatory arthritis and associated joint destruction in mice. PLoS One 6: e22256. https://doi.org/10.1371/journal.pone.0022256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X., T. Li, W. Wang, W. Yuan, H. Liu, Y. Cheng, P. Wang, Y. Zhang, and W. Han. 2016. Cytokine-like 1 chemoattracts monocytes/macrophages via CCR2. Journal of Immunology 196: 4090–4099. https://doi.org/10.4049/jimmunol.1501908.

    Article  CAS  Google Scholar 

  17. Kim, J., J. Kim, S.H. Lee, S.V. Kepreotis, J. Yoo, J.S. Chun, R.J. Hajjar, D. Jeong, and W.J. Park. 2016. Cytokine-like 1 regulates cardiac fibrosis via modulation of TGF-beta signaling. PLoS One 11: e0166480. https://doi.org/10.1371/journal.pone.0166480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Begley, L.A., S. Kasina, J. MacDonald, and J.A. Macoska. 2008. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 43: 194–199. https://doi.org/10.1016/j.cyto.2008.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wen, M.J., H.M. Wang, X.L. Zhang, J. Long, Z. Lv, Q.L. Kong, and Y.Q. An. 2012. Cytokine-like 1 is involved in the growth and metastasis of neuroblastoma cells. International Journal of Oncology 41: 1419–1424. https://doi.org/10.3892/ijo.2012.1552.

    Article  CAS  PubMed  Google Scholar 

  20. Kwon, Y.J., S.J. Lee, J.S. Koh, S.H. Kim, H.W. Lee, M.C. Kang, J.B. Bae, Y.J. Kim, and J.H. Park. 2012. Genome-wide analysis of DNA methylation and the gene expression change in lung cancer. Journal of Thoracic Oncology 7: 20–33. https://doi.org/10.1097/JTO.0b013e3182307f62.

    Article  CAS  PubMed  Google Scholar 

  21. Tanskanen, T., A.E. Gylfe, R. Katainen, M. Taipale, L. Renkonen-Sinisalo, H. Jarvinen, J.P. Mecklin, et al. 2015. Systematic search for rare variants in Finnish early-onset colorectal cancer patients. Cancer Genetics 208: 35–40. https://doi.org/10.1016/j.cancergen.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  22. Wichterman, Keith A., Arthur E. Baue, and Irshad H. Chaudry. 1980. Sepsis and septic shock—a review of laboratory models and a proposal. Journal of Surgical Research 29: 189–201. https://doi.org/10.1016/0022-4804(80)90037-2.

    Article  CAS  Google Scholar 

  23. Souto, F.O., J.C. Alves-Filho, W.M. Turato, M. Auxiliadora-Martins, A. Basile-Filho, and F.Q. Cunha. 2011. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. American Journal of Respiratory and Critical Care Medicine 183: 234–242. https://doi.org/10.1164/rccm.201003-0416OC.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W.Y., T. Li, X.L. Wang, W.X. Yuan, Y.Y. Cheng, H.Y. Zhang, E.Q. Xu, et al. 2015. FAM19A4 is a novel cytokine ligand of formyl peptide receptor 1 (FPR1) and is able to promote the migration and phagocytosis of macrophages. Cellular & Molecular Immunology 12: 615–624. https://doi.org/10.1038/cmi.2014.61.

    Article  CAS  Google Scholar 

  25. Chousterman, B.G., F.K. Swirski, and G.F. Weber. 2017. Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology 39: 517–528. https://doi.org/10.1007/s00281-017-0639-8.

    Article  CAS  PubMed  Google Scholar 

  26. Petri, B., and M.J. Sanz. 2018. Neutrophil chemotaxis. Cell and Tissue Research 371: 425–436. https://doi.org/10.1007/s00441-017-2776-8.

    Article  CAS  PubMed  Google Scholar 

  27. Degryse, B., and M. de Virgilio. 2003. The nuclear protein HMGB1, a new kind of chemokine? FEBS Letters 553: 11–17. https://doi.org/10.1016/s0014-5793(03)01027-5.

    Article  CAS  PubMed  Google Scholar 

  28. van der Vorst, E.P., Y. Doring, and C. Weber. 2015. MIF and CXCL12 in cardiovascular diseases: functional differences and similarities. Frontiers in Immunology 6: 373. https://doi.org/10.3389/fimmu.2015.00373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bose, S., and J. Cho. 2013. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Archives of Pharmacal Research 36: 1039–1050. https://doi.org/10.1007/s12272-013-0161-z.

    Article  CAS  PubMed  Google Scholar 

  30. Raghu, H., C.M. Lepus, Q. Wang, H.H. Wong, N. Lingampalli, F. Oliviero, L. Punzi, N.J. Giori, S.B. Goodman, C.R. Chu, J.B. Sokolove, and W.H. Robinson. 2017. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Annals of the Rheumatic Diseases 76: 914–922. https://doi.org/10.1136/annrheumdis-2016-210426.

    Article  CAS  PubMed  Google Scholar 

  31. Winter, C., C. Silvestre-Roig, A. Ortega-Gomez, P. Lemnitzer, H. Poelman, A. Schumski, J. Winter, et al. 2018. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metabolism 28 (175–182): e175. https://doi.org/10.1016/j.cmet.2018.05.002.

    Article  CAS  Google Scholar 

  32. Tomczak, A., and M.T. Pisabarro. 2011. Identification of CCR2-binding features in Cytl1 by a CCL2-like chemokine model. Proteins 79: 1277–1292. https://doi.org/10.1002/prot.22963.

    Article  CAS  PubMed  Google Scholar 

  33. Kapoor A Fau - Thiemermann, Christoph, and C. Thiemermann. 2011. Targeting CCR2: a novel therapeutic strategy for septic shock? American Journal of Respiratory and Critical Care Medicine 183: 150–151. doi: https://doi.org/10.1164/rccm.201009-1403ED.

    Article  PubMed  Google Scholar 

  34. Fang, H., W. Jiang, J. Cheng, Y. Lu, A. Liu, L. Kan, and U. Dahmen. 2015. Balancing innate immunity and inflammatory state via modulation of neutrophil function: a novel strategy to fight sepsis. Journal of Immunology Research 2015: 187048. https://doi.org/10.1155/2015/187048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Venet, F., and G. Monneret. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews. Nephrology 14: 121–137. https://doi.org/10.1038/nrneph.2017.165.

    Article  CAS  PubMed  Google Scholar 

  36. Moussion, C., Jean-Philippe Ortega N Fau - Girard, and J. P. Girard. 2008. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 3: e3331. doi: https://doi.org/10.1371/journal.pone.0003331.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cohen, I., P. Rider, Y. Carmi, A. Braiman, S. Dotan, M.R. White, E. Voronov, M.U. Martin, C.A. Dinarello, and R.N. Apte. 2010. Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proceedings of the National Academy of Sciences of the United States of America 107: 2574–2579. https://doi.org/10.1073/pnas.0915018107.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zaki, O.S., M.M. Safar, A.A. Ain-Shoka, and L.A. Rashed. 2018. Bone marrow mesenchymal stem cells combat lipopolysaccharide-induced sepsis in rats via amendment of P38-MAPK signaling cascade. Inflammation 41: 541–554. https://doi.org/10.1007/s10753-017-0710-6.

    Article  CAS  PubMed  Google Scholar 

  39. Wrann, C.D., S.W. Winter, T. Barkhausen, F. Hildebrand, C. Krettek, and N.C. Riedemann. 2007. Distinct involvement of p38-, ERK1/2 and PKC signaling pathways in C5a-mediated priming of oxidative burst in phagocytic cells. Cellular Immunology 245: 63–69. https://doi.org/10.1016/j.cellimm.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  40. Oliveira, J.S.S., G.D.S. Santos, J.A. Moraes, A.M. Saliba, T.C. Barja-Fidalgo, A.L. Mattos-Guaraldi, and P.E. Nagao. 2018. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells. Memórias do Instituto Oswaldo Cruz 113: e140421. https://doi.org/10.1590/0074-02760170421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneller, D., R. Hofer-Warbinek, C. Sturtzel, K. Lipnik, B. Gencelli, M. Seltenhammer, M.J. Wen, et al. 2019. Cytokine-like 1 is a novel proangiogenic factor secreted by and mediating functions of endothelial progenitor cells. Circulation Research 124: 243–255. https://doi.org/10.1161/Circresaha.118.313645.

    Article  CAS  PubMed  Google Scholar 

  42. Shin, Y., Y. Won, J.I. Yang, and J.S. Chun. 2019. CYTL1 regulates bone homeostasis in mice by modulating osteogenesis of mesenchymal stem cells and osteoclastogenesis of bone marrow-derived macrophages. Cell Death & Disease 10: 47. https://doi.org/10.1038/s41419-018-1284-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Han Wenling from the Department of Immunology, Peking University Health Science Center for providing the CYTL1 protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxue Zhu.

Ethics declarations

The animal experimental procedures were approved by the Ethics Committee of the Peking University People’s Hospital.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Li, S., Zhao, X. et al. CYTL1 Promotes the Activation of Neutrophils in a Sepsis Model. Inflammation 43, 274–285 (2020). https://doi.org/10.1007/s10753-019-01116-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01116-9

KEY WORDS

Navigation