Skip to main content
Log in

Walnut-Associated Fatty Acids Inhibit LPS-Induced Activation of BV-2 Microglia

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Walnuts have high levels of the omega-3 fatty acid alpha-linolenic acid (C18:3n-3, ALA) and the omega-6 fatty acid linoleic acid (C18:2n-6, LA). Previous research has demonstrated that pre-treatment of BV-2 microglia with walnut extract inhibited lipopolysaccharide (LPS)-induced activation of microglia. As an extension of that study, the effects of walnut-associated fatty acids on BV-2 microglia were assessed. BV-2 murine microglia cells were treated with LA, ALA, or a combination of LA+ALA prior to or after exposure to LPS. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) were measured in cell-conditioned media. Cyclooxeganse-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression were assessed in BV-2 microglia. Both LA and ALA protected against LPS-induced increases in NO, iNOS, COX-2, and TNF-alpha when used before LPS exposure. When BV-2 microglia were treated with fatty acids after LPS, only COX-2 and TNF-alpha were significantly attenuated by the fatty acids. There was no synergism of LA+ALA, as the LA+ALA combination was no more effective than LA or ALA alone. Fatty acids, like those found in walnuts, may protect against production of cytotoxic intermediates and cell-signaling molecules from microglia and may prove beneficial for preventing age- or disease-related neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dwyer, J.B., and D.A. Ross. 2016. Modern microglia: novel targets in psychiatric neuroscience. Biological Psychiatry 80 (7): e47–e49.

    PubMed  PubMed Central  Google Scholar 

  2. Hanisch, U.K. 2002. Microglia as a source and target of cytokines. Glia 40 (2): 140–155.

    PubMed  Google Scholar 

  3. Ladeby, R., M. Wirenfeldt, D. Garcia-Ovejero, C. Fenger, L. Dissing-Olesen, I. Dalmau, and B. Finsen. 2005. Microglial cell population dynamics in the injured adult central nervous system. Brain Research Reviews 48 (2): 196–206.

    CAS  PubMed  Google Scholar 

  4. Hemmer, K., L. Fransen, H. Vanderstichele, E. Vanmechelen, and P. Heuschling. 2001. An in vitro model for the study of microglia-induced neurodegeneration: involvement of nitric oxide and tumor necrosis factor-alpha. Neurochemistry International 38 (7): 557–565.

    CAS  PubMed  Google Scholar 

  5. Perry, V.H. 2010. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathologica 120 (3): 277–286.

    CAS  PubMed  Google Scholar 

  6. Romano, A.D., G. Serviddio, A. de Matthaeis, F. Bellanti, and G. Vendemiale. 2010. Oxidative stress and aging. Journal of Nephrology 23 (Suppl 15): S29–S36.

    PubMed  Google Scholar 

  7. Wang, J.Y., L.L. Wen, Y.N. Huang, Y.T. Chen, and M.C. Ku. 2006. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Current Pharmaceutical Design 12 (27): 3521–3533.

    CAS  PubMed  Google Scholar 

  8. Borst, K., M. Schwabenland, and M. Prinz. 2018. Microglia metabolism in health and disease. Neurochemistry International. https://doi.org/10.1016/j.neuint.2018.11.006.

    PubMed  Google Scholar 

  9. Rangarajan, P., A. Karthikeyan, and S.T. Dheen. 2016. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Medicine 18 (3): 453–464.

    CAS  PubMed  Google Scholar 

  10. Hornedo-Ortega, R., A.B. Cerezo, R.M. de Pablos, S. Krisa, T. Richard, M.C. García-Parrilla, and A.M. Troncoso. 2018. Phenolic compounds characteristic of the mediterranean diet in mitigating microglia-mediated neuroinflammation. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/fncel.2018.00373.

  11. Poddar, J., M. Pradhan, G. Ganguly, and S. Chakrabarti. 2019. Biochemical deficits and cognitive decline in brain aging: intervention by dietary supplements. Journal of Chemical Neuroanatomy 95: 70–80.

    CAS  PubMed  Google Scholar 

  12. Poulose, S.M., D.F. Bielinski, and B. Shukitt-Hale. 2013. Walnut diet reduces accumulation of polyubiquitinated proteins and inflammation in the brain of aged rats. Journal of Nutritional Biochemistry 24 (5): 912–919.

    CAS  PubMed  Google Scholar 

  13. Poulose, S.M., M.G. Miller, and B. Shukitt-Hale. 2014. Role of walnuts in maintaining brain health with age. Journal of Nutrition 144 (4 Suppl): 561S–566S.

    CAS  PubMed  Google Scholar 

  14. Joseph, J.A., B. Shukitt-Hale, and L.M. Willis. 2009. Grape juice, berries, and walnuts affect brain aging and behavior. Journal of Nutrition 139 (9): 1813S–1817S.

    CAS  PubMed  Google Scholar 

  15. Arab, L., and A. Ang. 2015. A cross sectional study of the association between walnut consumption and cognitive function among adult US populations represented in NHANES. Journal of Nutrition, Health, and Aging 19 (3): 284–290.

    CAS  PubMed  Google Scholar 

  16. Gorji, N., R. Moeini, and Z. Memariani. 2018. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: a neuropharmacological review of their bioactive constituents. Pharmacology Research 129: 115–127.

    CAS  Google Scholar 

  17. Willis, L.M., B. Shukitt-Hale, V. Cheng, and J.A. Joseph. 2009. Dose-dependent effects of walnuts on motor and cognitive function in aged rats. British Journal of Nutrition 101 (8): 1140–1144.

    CAS  PubMed  Google Scholar 

  18. Fisher, D.R., S.M. Poulose, D.F. Bielinski, and B. Shukitt-Hale. 2017. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells. Nutritional Neuroscience 20 (2): 103–109.

    CAS  PubMed  Google Scholar 

  19. Willis, L.M., D.F. Bielinski, D.R. Fisher, N.R. Matthan, and J.A. Joseph. 2010. Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2. Inflammation 33 (5): 325–333.

    CAS  PubMed  Google Scholar 

  20. Hayes, D., M.J. Angove, J. Tucci, and C. Dennis. 2016. Walnuts (Juglans regia) Chemical composition and research in human health. Critical Reviews in Food Science and Nutrition 56 (8): 1231–1241.

    CAS  PubMed  Google Scholar 

  21. Simopoulos, A.P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedical Pharmacotherapy 56 (8): 365–379.

    CAS  Google Scholar 

  22. Simopoulos, A.P. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine 233 (6): 674–688.

    CAS  PubMed  Google Scholar 

  23. Loef, M., and H. Walach. 2013. The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. Journal of Nutrition in Gerontology and Geriatrics 32 (1): 1–23.

    PubMed  Google Scholar 

  24. Tootoonchi, A.S., M. Doosti, K. Abdi, G. Amin, and M. Goodarzi. 2013. Differences in omega-6/omega-3 ratio and polyunsaturated fatty acid content in five Iranian walnuts (Juglans regia) cultivars. Indian Journal of Agricultural Sciences 83: 234–236.

    CAS  Google Scholar 

  25. Muradoglu, F.H., I. Oguz, K. Yildiz, and H. Yilmaz. 2010. Some chemical composition of walnut (Juglans regia L.) selections from Eastern Turkey. African Journal of Agricultural Research 5: 2379–2385.

    Google Scholar 

  26. Lei, E., K. Vacy, and W.C. Boon. 2016. Fatty acids and their therapeutic potential in neurological disorders. Neurochemistry International 95: 75–84.

    CAS  PubMed  Google Scholar 

  27. Romano, A., J.B. Koczwara, C.A. Gallelli, D. Vergara, M.V. Micioni Di Bonaventura, S. Gaetani, and A.M. Giudetti. 2017. Fats for thoughts: an update on brain fatty acid metabolism. International Journal of Biochemistry and Cellular Biology 84: 40–45.

    CAS  Google Scholar 

  28. Zárate, R., N. El Jaber-Vazdekis, N. Tejera, J.A. Pérez, and C. Rodríguez. 2017. Significance of long chain polyunsaturated fatty acids in human health. Clinical and Translational Medicine 6 (1): 25.

    PubMed  PubMed Central  Google Scholar 

  29. Blondeau, N., C. Nguemeni, D.N. Debruyne, M. Piens, X. Wu, H. Pan, X. Hu, C. Gandin, R.H. Lipsky, J.C. Plumier, A.M. Marini, and C. Heurteaux. 2009. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34 (12): 2548–2559.

    CAS  PubMed  Google Scholar 

  30. Carey, A.N., D.R. Fisher, J.A. Joseph, and B. Shukitt-Hale. 2013. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. Nutritional Neuroscience 16 (1): 13–20.

    CAS  PubMed  Google Scholar 

  31. Ikeguchi, S., Y. Izumi, N. Kitamura, S. Kishino, J. Ogawa, A. Akaike, and T. Kume. 2018. Inhibitory effect of the gut microbial linoleic acid metabolites, 10-oxo-trans-11-octadecenoic acid and 10-hydroxy-cis-12-octadecenoic acid, on BV-2 microglial cell activation. Journal of Pharmacological Sciences 138 (1): 9–15.

    CAS  PubMed  Google Scholar 

  32. Pribis, P., and B. Shukitt-Hale. 2014. Cognition: the new frontier for nuts and berries. American Journal of Clinical Nutrition 100 (Suppl 1): 347S–352S.

    CAS  PubMed  Google Scholar 

  33. Kiso, Y. 2011. Pharmacology in health foods: effects of arachidonic acid and docosahexaenoic acid on the age-related decline in brain and cardiovascular system function. Journal of Pharmacological Sciences 115 (4): 471–475.

    CAS  PubMed  Google Scholar 

  34. Aktan, F. 2004. iNOS-mediated nitric oxide production and its regulation. Life Sciences. 75 (6): 639–653.

    CAS  PubMed  Google Scholar 

  35. Wang, H., Q. Hao, Q.R. Li, X.W. Yan, S. Ye, Y.S. Li, N. Li, and J.S. Li. 2007. Omega-3 polyunsaturated fatty acids affect lipopolysaccharide-induced maturation of dendritic cells through mitogen-activated protein kinases p38. Nutrition 23 (6): 474–482.

    PubMed  Google Scholar 

  36. Monmai, C., S.H. Go, I.S. Shin, S. You, D.O. Kim, S. Kang, and W.J. Park. 2018. Anti-inflammatory effect of Asterias amurensis fatty acids through NF-κB and MAPK pathways against LPS-stimulated RAW264.7 Cells. Journal of Microbiology and Biotechnology 28 (10): 1635–1644.

    PubMed  Google Scholar 

  37. Popiolek-Barczyk, K., and J. Mika. 2016. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Current Medicinal Chemistry 23 (26): 2908–2928.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fitzpatrick, F.A. 2004. Cyclooxygenase enzymes: regulation and function. Current Pharmaceutical Design 10 (6): 577–588.

    CAS  PubMed  Google Scholar 

  39. Han, Y.M., M. Jeong, J.M. Park, M.Y. Kim, E.J. Go, J.Y. Cha, K.J. Kim, and K.B. Hahm. 2016. The ω-3 polyunsaturated fatty acids prevented colitis-associated carcinogenesis through blocking dissociation of β-catenin complex, inhibiting COX-2 through repressing NF-κB, and inducing 15-prostaglandin dehydrogenase. Oncotarget 7 (39): 63583–63595.

    PubMed  PubMed Central  Google Scholar 

  40. Inoue, T., M. Tanaka, S. Masuda, R. Ohue-Kitano, H. Yamakage, K. Muranaka, H. Wada, T. Kusakabe, A. Shimatsu, K. Hasegawa, and N. Satoh-Asahara. 2017. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. BBA Molecular and Cell Biology of Lipids 1862 (5): 552–560.

    CAS  PubMed  Google Scholar 

  41. Chen, X., S. Wu, C. Chen, B. Xie, Z. Fang, W. Hu, J. Chen, H. Fu, and H. He. 2017. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. Journal of Neuroinflammation 14 (1): 143. https://doi.org/10.1186/s12974-017-0917-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kraft, A.D., C.A. McPherson, and G.J. Harry. 2009. Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 30 (5): 785–793.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Olmos, G., and J. Lladó. 2014. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators of Inflammation 2014: 861231. https://doi.org/10.1155/2014/861231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su, H., R. Liu, M. Chang, J. Huang, Q. Jin, and X. Wang. 2018. Effect of dietary alpha-linolenic acid on blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. European Journal of Nutrition 57 (3): 877–891.

    CAS  PubMed  Google Scholar 

  45. Navarini, L., A. Afeltra, G. Gallo Afflitto, and D.P.E. Margiotta. 2017. Polyunsaturated fatty acids: any role in rheumatoid arthritis? Lipids in Health and Disease 16 (1): 197.

    PubMed  PubMed Central  Google Scholar 

  46. Calder, P.C. 2009. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 91 (6): 791–795.

    CAS  PubMed  Google Scholar 

  47. Hennessy, A.A., R.P. Ross, R. Devery, and C. Stanton. 2011. The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids 46 (2): 105–119.

    CAS  PubMed  Google Scholar 

  48. Wysoczański, T., E. Sokoła-Wysoczańska, J. Pękala, S. Lochyński, K. Czyż, R. Bodkowski, G. Herbinger, B. Patkowska-Sokoła, and T. Librowski. 2016. Omega-3 fatty acids and their role in central nervous system - a review. Current Medicinal Chemistry 23 (8): 816–831.

    PubMed  Google Scholar 

  49. Park, J., J.S. Min, B. Kim, U.B. Chae, J.W. Yun, M.S. Choi, I.K. Kong, K.T. Chang, and D.S. Lee. 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neuroscience Letters 584: 191–196.

    CAS  PubMed  Google Scholar 

  50. Corsi, L., B.M. Dongmo, and R. Avallone. 2015. Supplementation of omega 3 fatty acids improves oxidative stress in activated BV2 microglial cell line. International Journal of Food Science and Nutrition 66 (3): 293–299.

    CAS  Google Scholar 

  51. Kaur, P., I. Heggland, M. Aschner, and T. Syversen. 2008. Docosahexaenoic acid may act as a neuroprotector for methylmercury-induced neurotoxicity in primary neural cell cultures. Neurotoxicology 29 (6): 978–987.

    CAS  PubMed  Google Scholar 

  52. Park, B.S., and J.O. Lee. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & Molecular Medicine 6 (45): e66. https://doi.org/10.1038/emm.2013.97.

    Article  CAS  Google Scholar 

  53. Wong, S.W., M.J. Kwon, A.M. Choi, H.P. Kim, K. Nakahira, and D.H. Hwang. 2009. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. Journal of Biological Chemistry. 284 (40): 27384–27392.

    CAS  PubMed  Google Scholar 

  54. De Smedt-Peyrusse, V., F. Sargueil, A. Moranis, H. Harizi, S. Mongrand, and S. Layé. 2008. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. Journal of Neurochemistry 105 (2): 296–307.

    PubMed  Google Scholar 

  55. Shabani, M., M. Nazeri, S. Parsania, M. Razavinasab, N. Zangiabadi, K. Esmaeilpour, and F. Abareghi. 2012. Walnut consumption protects rats against cisplatin-induced neurotoxicity. Neurotoxicology 33 (5): 1314–1321.

    CAS  PubMed  Google Scholar 

  56. Harandi, S., L. Golchin, M. Ansari, A. Moradi, M. Shabani, and V. Sheibani. 2015. Antiamnesic effects of walnuts consumption on scopolamine-induced memory impairments in rats. Basic and Clinical Neuroscience 6 (2): 91–99.

    PubMed  PubMed Central  Google Scholar 

  57. Zou, J., P.S. Cai, C.M. Xiong, and J.L. Ruan. 2016. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice. Journal of Huazhong University of Science and Technology: Medical sciences 36 (1): 21–30.

    CAS  Google Scholar 

  58. Sánchez-González, C., C.J. Ciudad, V. Noé, and M. Izquierdo-Pulido. 2017. Health benefits of walnut polyphenols: an exploration beyond their lipid profile. Critical Reviews in Food Science and Nutrition 57 (16): 3373–3383.

    PubMed  Google Scholar 

  59. Pribis, P., R.N. Bailey, A.A. Russell, M.A. Kilsby, M. Hernandez, W.J. Craig, T. Grajales, D.J. Shavlik, and J. Sabatè. 2012. Effects of walnut consumption on cognitive performance in young adults. British Journal of Nutrition 107 (9): 1393–1401.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA intramural and California Walnut Commission. In memory of James A. Joseph, our valued colleague and friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda N. Carey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carey, A.N., Fisher, D.R., Bielinski, D.F. et al. Walnut-Associated Fatty Acids Inhibit LPS-Induced Activation of BV-2 Microglia. Inflammation 43, 241–250 (2020). https://doi.org/10.1007/s10753-019-01113-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01113-y

KEY WORDS

Navigation