Skip to main content

Advertisement

Log in

LINC01140 Alleviates the Oxidized Low-Density Lipoprotein-Induced Inflammatory Response in Macrophages via Suppressing miR-23b

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Our previous study has demonstrated that miR-23b enhances oxidized low-density lipoprotein (oxLDL)-induced inflammatory response of macrophages through the A20/NF-κB signaling pathway, thus contributing to atherosclerosis. This study aims to further investigate the upstream regulators of miR-23b in mediating oxLDL-induced inflammatory response. Human monocyte cell line THP1 was induced to differentiate into macrophages followed by the oxLDL stimulation of inflammatory response. The expression of miR-23b, LINC01140, and p53 mRNA was detected by quantitative PCR. The combination of miR-23b and LINC01140 was confirmed by luciferase reporter assay and RNA immunoprecipitation. The binding of p53 and LINC01140 promoter was determined by luciferase reporter assay. The level of inflammatory cytokines, including MCP-1, TNF-α, and IL-1β, was assessed by enzyme-linked immunosorbent assay. LINC01140 was downregulated, while p53 and miR-23b were upregulated in oxLDL-induced inflammatory response of macrophages. Overexpression of LINC01140 reduced NF-κB activity by reducing miR-23b and increasing A20. The transcription of LINC01140 was inhibited by binding of p53 and the LINC01140 promoter region. Knockdown of p53 significantly reduced NF-κB activity and level of inflammatory cytokines by promoting LINC01140 expression. Our findings demonstrated that LINC01140 acts as an anti-inflammatory factor through negatively regulating miR-23/A20 axis. In addition, p53 is identified as a transcriptional repressor of LINC01140.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leipsic, J., M. Anastasius, and P. Blanke. 2019. Plaque, Pressure, and Risk: The Story Unfolds∗. Journal of the American College of Cardiology 73 (19): 2425–2426.

    Article  Google Scholar 

  2. Pei, C., Y. Zhang, P. Wang, B.J. Zhang, L. Fang, B. Liu, and S. Meng. 2019. Berberine alleviates oxidized low-density lipoprotein-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways. Phytotherapy Research 33 (2): 294–308.

    Article  CAS  Google Scholar 

  3. Chen, H.-H., K. Keyhanian, X. Zhou, R.O. Vilmundarson, N.A.M. Almontashiri, S.A. Cruz, N.R. Pandey, N. Lerma Yap, T. Ho, C.A. Stewart, H. Huang, A. Hari, M. Geoffrion, R. McPherson, K.J. Rayner, and A.F.R. Stewart. 2015. IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circulation Research 117 (8): 671–683.

    Article  CAS  Google Scholar 

  4. Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation 122 (3): 787–795.

    Article  CAS  Google Scholar 

  5. Li, K., D. Ching, F.S. Luk, and R.L. Raffai. 2015. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circulation Research 117 (1): e1–e11.

    Article  CAS  Google Scholar 

  6. He, L.-P., X.-S. Zhao, and L.-P. He. 2018. Abnormally expressed miR-23b in Chinese Mongolian at high cardiovascular risk may contribute to monocyte/macrophage inflammatory reaction in atherosclerosis. Bioscience Reports 38 (6): BSR20180673.

    Article  Google Scholar 

  7. Mowel, W.K., J.J. Kotzin, S. McCright, V.D. Neal, and J. Henao-Mejia. 2018. Control of Immune Cell Homeostasis and Function by lncRNAs. Trends in Immunology 39 (1): 55–69.

    Article  CAS  Google Scholar 

  8. Sallam, T., J. Sandhu, and P. Tontonoz. 2018. Long Noncoding RNA Discovery in Cardiovascular Disease: Decoding Form to Function. Circulation Research 122 (1): 155–166.

    Article  CAS  Google Scholar 

  9. Sun, J.-f., et al. 2018. Roles of Circular RNAs And Their Interactions With MicroRNAs in Human Disorders. Clinical Surgery Research Communications 2 (2): 1–8.

    Article  Google Scholar 

  10. Hadjicharalambous, M.R., B.T. Roux, E. Csomor, C.A. Feghali-Bostwick, L.A. Murray, D.L. Clarke, and M.A. Lindsay. 2019. Long intergenic non-coding RNAs regulate human lung fibroblast function: Implications for idiopathic pulmonary fibrosis. Scientific Reports 9 (1): 6020–6020.

    Article  Google Scholar 

  11. Groh, L., S.T. Keating, L.A.B. Joosten, M.G. Netea, and N.P. Riksen. 2018. Monocyte and macrophage immunometabolism in atherosclerosis. Seminars in Immunopathology 40 (2): 203–214.

    Article  CAS  Google Scholar 

  12. Lei, W., et al. 2019. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. Journal of Cellular Physiology 234: 5319–5326.

    Article  Google Scholar 

  13. Yan, L., Z. Liu, H. Yin, Z. Guo, and Q. Luo. 2019. Silencing of MEG3 inhibited ox-LDL-induced inflammation and apoptosis in macrophages via modulation of the MEG3/miR-204/CDKN2A regulatory axis. Cell Biology International 43 (4): 409–420.

    Article  CAS  Google Scholar 

  14. J, L., H. GQ, and K. ZP. 2019. Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox-LDL-treated human macrophages by upregulating miR-330-5p. Journal of Cellular Physiology 234 (4): 5134–5142.

    Article  Google Scholar 

  15. Song, P., et al. 2017. A three-lncRNA expression signature associated with the prognosis of gastric cancer patients. Cancer Medicine 6 (6): 1154–1164.

    Article  CAS  Google Scholar 

  16. Beermann, J., M.T. Piccoli, J. Viereck, and T. Thum. 2016. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews 96 (4): 1297–1325.

    Article  CAS  Google Scholar 

  17. Ceolotto, G., A. Giannella, M. Albiero, M. Kuppusamy, C. Radu, P. Simioni, K. Garlaschelli, A. Baragetti, A.L. Catapano, E. Iori, G.P. Fadini, A. Avogaro, and S. Vigili de Kreutzenberg. 2017. miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research 113 (13): 1627–1638.

    Article  CAS  Google Scholar 

  18. Song, J., et al. 2019. MicroRNA-181a regulates the activation of the NLRP3 inflammatory pathway by targeting MEK1 in THP-1 macrophages stimulated by ox-LDL. Journal of Cellular Biochemistry 0 (0).

  19. Mak, A.S. 2014. p53 in cell invasion, podosomes, and invadopodia. Cell Adhesion & Migration 8 (3): 205–214.

    Article  Google Scholar 

  20. Cao, R.Y., et al. 2017. Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice. PLoS One 12 (3): e0175061.

    Article  Google Scholar 

  21. Mazière, C., A. Meignotte, F. Dantin, M.A. Conte, and J.C. Mazière. 2000. Oxidized LDL Induces an Oxidative Stress and Activates the Tumor Suppressor p53 in MRC5 Human Fibroblasts. Biochemical and Biophysical Research Communications 276 (2): 718–723.

    Article  Google Scholar 

  22. Kinscherf, R., R. Claus, M. Wagner, C. Gehrke, H. Kamencic, D. Hou, O. Nauen, W. Schmiedt, G. Kovacs, J. Pill, J. Metz, and H.P. Deigner. 1998. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. The FASEB Journal 12 (6): 461–467.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Scientific and Technological Project of Inner Mongolia Autonomous Region (No. 201602098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingsheng Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhao, X. & He, L. LINC01140 Alleviates the Oxidized Low-Density Lipoprotein-Induced Inflammatory Response in Macrophages via Suppressing miR-23b. Inflammation 43, 66–73 (2020). https://doi.org/10.1007/s10753-019-01094-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01094-y

KEY WORDS

Navigation