Skip to main content
Log in

Curcumin Modulates Paraquat-Induced Epithelial to Mesenchymal Transition by Regulating Transforming Growth Factor-β (TGF-β) in A549 Cells

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Paraquat (PQ), a widely used potent herbicide, generates superoxide anions and other free radicals, leading to severe toxicity and acute lung injury. PQ induces pulmonary fibrosis through epithelial to mesenchymal transition (EMT) characterized by increased number of myofibroblasts. Time-dependent PQ-induced EMT has been evaluated in present investigation where intracellular ROS levels were significantly enhanced after 24 h of PQ intoxication. Anti-inflammatory effects of curcumin have been studied where alveolar epithelial cells (A549 cells) were incubated with curcumin (30 μΜ) for 1 and 3 h before PQ intoxication (700 μM). Western blot and immunocytochemistry studies revealed that pretreatment of A549 cells with curcumin for 3 h before PQ exposure has maintained E-cadherin expression and inhibited PQ induced α-smooth-muscle actin (α-SMA) expression. Transforming growth factor-β (TGF-β) that seems to be involved in PQ-induced EMT was enhanced after PQ intoxication, but curcumin pretreatment has effectively inhibited its expression. Immunostaining studies have shown that curcumin pretreatment has significantly reduced matrix metalloproteinase-9 (MMP-9) expressions, which were elevated after PQ intoxication. These results demonstrate that curcumin can regulate PQ-induced EMT by regulating the expression of TGF-β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eddleston, M. 2000. Patterns and problems of deliberate self-poisoning in the developing world. QJM 93: 715–731.

    Article  CAS  PubMed  Google Scholar 

  2. Sittipunt, C. 2005. Paraquat poisoning. Respiratory Care 50 (3): 383–385.

    PubMed  Google Scholar 

  3. Bismuth, C., R. Garnier, F.J. Band, J. Muszynski, and C. Keyes. 1990. Paraquat poisoning. An overview of the current status. Drug Safety 5 (4): 243–251.

    Article  CAS  PubMed  Google Scholar 

  4. Dinis-Oliveira, R.J., J.A. Duarte, A. Sanchez-Navarro, F. Remiao, M.L. Bastos, and F. Carvalho. 2008. Paraquat poisonings: Mechanisms of lung toxicity, clinical features and treatment. Critical Reviews in Toxicology 38 (1): 13–71.

    Article  CAS  PubMed  Google Scholar 

  5. Zerin, T., Y.S. Kim, S.Y. Hong, and H.Y. Song. 2012. Protective effect of methylprednisolone on paraquat-induced A549 cell cytotoxicity via induction of efflux transporter, P-glycoprotein expression. Toxicology Letters 208 (2): 101–107.

    Article  CAS  PubMed  Google Scholar 

  6. Knight, D.A., and S.T. Holgate. 2003. The airway epithelium: Structural and functional properties in health and disease. Respirology 8 (4): 432–446.

    Article  PubMed  Google Scholar 

  7. Chuquimia, O.D., D.H. Petursdottir, N. Periolo, and C. Fernández. 2013. Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth. Infection and Immunity 81 (1): 381–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hiemstra, P.S., P.B. McCray, and R. Bals. 2015. The innate immune function of airway epithelial cells in inflammatory lung disease. European Respiratory Journal 45 (4): 1150–1162.

    Article  CAS  PubMed  Google Scholar 

  9. Bals, R., and P.S. Hiemstra. 2004 Feb. Innate immunity in the lung: How epithelial cells fight against respiratory pathogens. The European Respiratory Journal 23 (2): 327–333.

    Article  CAS  PubMed  Google Scholar 

  10. Parker, D., and A. Prince. 2011 Aug 1. Innate immunity in the respiratory epithelium. American Journal of Respiratory Cell and Molecular Biology 45 (2): 189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams, M.C. 2003. Alveolar type I cells: Molecular phenotype and development. Annual Review of Physiology 65 (1): 669–695.

    Article  CAS  PubMed  Google Scholar 

  12. Fereol, S., R. Fodil, G. Pelle, B. Louis, and D. Isabey. 2008. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs). Respiratory Physiology & Neurobiology 163 (1): 3–16.

    Article  CAS  Google Scholar 

  13. Castranova, V., J. Rabovsky, J.H. Tucker, and P.R. Miles. 1988. The alveolar type II epithelial cell: A multifunctional pneumocyte. Toxicology and Applied Pharmacology 93 (3): 472–483.

    Article  CAS  PubMed  Google Scholar 

  14. Evans, M.J., L.J. Cabral, R.J. Stephens, and G. Freeman. 1973. Renewal of alveolar epithelium in the rat following exposure to NO2. The American Journal of Pathology 70 (2): 175–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Crosby, L.M., and C.M. Waters. 2010. Epithelial repair mechanisms in the lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 298 (6): L715–L731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakai, N., and A.M. Tager. 2013. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1832 (7): 911–921.

    Article  CAS  Google Scholar 

  17. Schissel SL, Layne MD 2006. Telomerase, myofibroblasts, and pulmonary fibrosis. 520–522.

  18. Kage, H., and Z. Borok. 2012. EMT and interstitial lung disease: A mysterious relationship. Current Opinion in Pulmonary Medicine 18 (5): 517–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamouille, S., J. Xu, and R. Derynck. 2014. Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology 15 (3): 178–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalluri, R., and R.A. Weinberg. 2009. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119 (6): 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalluri, R., and E.G. Neilson. 2003. Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation 112 (12): 1776–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, K.K., M.C. Kugler, P.J. Wolters, L. Robillard, M.G. Galvez, A.N. Brumwell, D. Sheppard, and H.A. Chapman. 2006. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences 103 (35): 13180–13185.

    Article  CAS  Google Scholar 

  23. Tanjore, H., X.C. Xu, V.V. Polosukhin, A.L. Degryse, B. Li, W. Han, T.P. Sherrill, D. Plieth, E.G. Neilson, T.S. Blackwell, and W.E. Lawson. 2009. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. American Journal of Respiratory and Critical Care Medicine 180 (7): 657–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamada, A., T. Aki, K. Unuma, T. Funakoshi, K. Uemura, et al. 2015. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS One 10 (3): e0120192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, Y.Y., P. Shen, and W.X. Chang. 2015. Involvement of epithelial-to-mesenchymal transition and associated transforming growth factor-β/Smad signaling in paraquat-induced pulmonary fibrosis. Molecular Medicine Reports 12 (6): 7979–7984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tyagi, N., D. Dash, and R. Singh. 2016. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model. Inflammopharmacology. 24 (6): 335–345.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, S., B. Jiang, H. Wang, C. Shen, H. Chen, and L. Zeng. 2017. Curcumin suppresses intestinal fibrosis by inhibition of pparγ-mediated epithelial-mesenchymal transition. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2017/7876064.

  28. Wang Q, Qu C, Xie F, Chen L, Liu L, Liang X. Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. American Journal of Cancer Research 017;7(1):125.

  29. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65 (1–2): 55–63.

    Article  CAS  Google Scholar 

  30. Alaimo, A., R.M. Gorojod, and M.L. Kotler. 2011. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells. Neurochemistry International 59 (2): 297–308.

    Article  CAS  PubMed  Google Scholar 

  31. Brussel, J.P., G.J. van Steenbrugge, J.C. Romijn, F.H. Schröder, and G.H.J. Mickisch. 1999. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. European Journal of Cancer 35 (4): 664–671.

    Article  PubMed  Google Scholar 

  32. Giulietti, A., L. Overbergh, D. Valckx, B. Decallonne, R. Bouillon, and C. Mathieu. 2001. An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods 25 (4): 386–401.

    Article  CAS  PubMed  Google Scholar 

  33. Willis, B.C., R.M. Dubois, and Z. Borok. 2006. Epithelial origin of myofibroblasts during fibrosis in the lung. Proceedings of the American Thoracic Society 3 (4): 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, T., J.M. Chen, T.G. Xiao, X.B. Shu, H.C. Xu, L.L. Yang, L.J. Xing, P.Y. Zheng, and G. Ji. 2016. Qinggan Huoxue recipe suppresses epithelial-to-mesenchymal transition in alcoholic liver fibrosis through TGF-β1/Smad signaling pathway. World Journal of Gastroenterology 22 (19): 4695–4706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheppard, D. 2006. Transforming growth factor β: A central modulator of pulmonary and airway inflammation and fibrosis. Proceedings of the American Thoracic Society 3 (5): 413–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kasai, H., J.T. Allen, R.M. Mason, T. Kamimura, and Z. Zhang. 2005. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory Research 6 (1): 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hay, E.D. 1995. An overview of epithelio-mesenchymal transformation. Cells, Tissues, Organs 154 (1): 8–20.

    Article  CAS  Google Scholar 

  38. Willis, B.C., and Z. Borok. 2007. TGF-β-induced EMT: Mechanisms and implications for fibrotic lung disease. American Journal of Physiology Lung Cellular and Molecular Physiology 293 (3): L525–L534.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful to DST-Science and Engineering Research Board (DST-SERB), New Delhi, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, N., Singh, D.K., Dash, D. et al. Curcumin Modulates Paraquat-Induced Epithelial to Mesenchymal Transition by Regulating Transforming Growth Factor-β (TGF-β) in A549 Cells. Inflammation 42, 1441–1455 (2019). https://doi.org/10.1007/s10753-019-01006-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01006-0

KEY WORDS

Navigation