Skip to main content

Advertisement

Log in

Attenuation of Sepsis-Induced Cardiomyopathy by Regulation of MicroRNA-23b Is Mediated Through Targeting of MyD88-Mediated NF-κB Activation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Myocardial cell injury or cardiomyopathy is associated with excessive inflammatory response and apoptosis of cardiac myocytes during sepsis. MicroRNA-23b (miR-23b) is a multifunctional miRNA that is considered to regulate immunosuppression in sepsis. The aim of this study was to examine the effect of miR-23b on cardiomyopathy induced by sepsis and to explore the potential mechanism involved. Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP), and the level of miR-23b at different time points was measured by quantitative real-time polymerase chain reaction (qPCR). Then, we overexpressed miR-23b in vivo and in vitro. The rats were subjected to CLP 7 days after transfection. Cardiac function, inflammatory response, and heart tissues were examined 3 days thereafter. In an in vitro experiment, H9C2 cardiomyoblasts were stimulated with lipopolysaccharide (LPS) after transfection of miR-23b, following which apoptosis and the level of NF-κB were analyzed. The expression of miR-23b was upregulated during polymicrobial sepsis, and transfection of miR-23b lentivirus improved the outcome of sepsis-induced cardiomyopathy by attenuating inflammatory responses and protecting against histopathological damage. In in vitro experiments, elevated miR-23b inhibited excessive apoptosis of cardiomyocytes, which may be because activation of the NF-κB signaling pathway was inhibited by the decreased levels of TRAF6 and IKKβ. Therefore, miR-23b improved sepsis-induced cardiomyopathy by attenuating the inflammatory response, suppressing apoptosis, and preventing NF-κB activation via targeted inhibition of TRAF6 and IκκB. These results indicated that miR-23b may represent a novel therapeutic approach for clinical treatment of sepsis-induced cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Abbreviations

BNP:

Brain natriuretic peptide

CK-MB:

Creatine kinase-MB

CLP:

Cecal ligation and puncture

CO:

Cardiac output

EF:

Ejection fraction

ELISA:

Enzyme-linked immunosorbent assay

EMSA:

Electrophoretic mobility shift assay

ICAM-1:

Intercellular cell adhesion molecule 1

LPS:

Lipopolysaccharide

MIF:

Migration inhibitory factor

miR-23b:

MicroRNA-23b

NF-κB:

Nuclear factor kappaB

qPCR:

Quantitative real-time polymerase chain reaction

SIC :

Sepsis-induced cardiomyopathy

TLR:

Toll-like receptor

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.

    CAS  PubMed  Google Scholar 

  2. Gomez, E., M. Vercauteren, B. Kurtz, A. Ouvrard-Pascaud, P. Mulder, J.P. Henry, M. Besnier, A. Waget, R. Hooft Van Huijsduijnen, M.L. Tremblay, et al. 2012. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. Journal of Molecular and Cellular. 52 (6): 1257–1264.

    CAS  Google Scholar 

  3. Charpentier, J., C.E. Luyt, Y. Fulla, C. Vinsonneau, A. Cariou, S. Grabar, J.F. Dhainaut, J.P. Mira, and J.D. Chiche. 2004. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Critical Care Medicine 32 (3): 660–665.

    CAS  PubMed  Google Scholar 

  4. Gille-Johnson, P., C. Smedman, L. Gudmundsdotter, A. Somell, K. Nihlmark, S. Paulie, J. Andersson, and B. Gårdlund. 2012. Circulating monocytes are not the major source of plasma cytokines in patients with sepsis. Shock 38 (6): 577–583.

    CAS  PubMed  Google Scholar 

  5. Vieillard-Baron, A., V. Caille, C. Charron, G. Belliard, B. Page, and F. Jardin. 2008. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine 36 (6): 1701–1706.

    PubMed  Google Scholar 

  6. Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016. International Forum of Acute Care Trialists: Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. American Journal of Respiratory and Critical Care Medicine 193 (3): 259–272.

    CAS  PubMed  Google Scholar 

  7. Micek, S.T., C. McEvoy, M. McKenzie, N. Hampton, J.A. Doherty, and M.H. Kollef. 2013. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Critical Care 17 (5): R246.

    PubMed  PubMed Central  Google Scholar 

  8. Antonucci, E., E. Fiaccadori, K. Donadello, F.S. Taccone, F. Franchi, and S. Scolletta. 2014. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. Journal of Critical Care 29 (4): 500–511.

    PubMed  Google Scholar 

  9. Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8 (1021).

  10. Tsolaki, V., D. Makris, K. Mantzarlis, and E. Zakynthinos. 2017. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Medicine and Cellular Longevity 2017: 7393525.

    PubMed  PubMed Central  Google Scholar 

  11. Suffredini, A.F., R.E. Fromm, M.M. Parker, M. Brenner, J.A. Kovacs, R.A. Wesley, and J.E. Parrillo. 1989. The cardiovascular response of normal humans to the administration of endotoxin. The New England Journal of Medicine 321 (5): 280–287.

    CAS  PubMed  Google Scholar 

  12. Mann, M., A. Mehta, J.L. Zhao, K. Lee, G.K. Marinov, Y. Garcia-Flores, and D. Baltimore. 2017. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications 8 (1): 851.

    PubMed  PubMed Central  Google Scholar 

  13. Cao, C., C. Yin, S. Shou, J. Wang, L. Yu, X. Li, and Y. Chai. 2018. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. Shock 50 (5): 595–605.

    CAS  PubMed  Google Scholar 

  14. Zou, L., Y. Feng, Y.J. Chen, R. Si, S. Shen, Q. Zhou, F. Ichinose, M. Scherrer-Crosbie, and W. Chao. 2010. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 38 (5): 1335–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao, M., T. Ha, X. Zhang, L. Liu, X. Wang, J. Kelley, K. Singh, R. Kao, X. Gao, D. Williams, et al. 2010. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 40 (8): 2390–2399.

    Google Scholar 

  16. Gao, M., T. Ha, X. Zhang, X. Wang, L. Liu, J. Kalbfleisch, K. Singh, D. Williams, and C. Li. 2013. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. The Journal of Infectious Diseases 207 (9): 1471–1479.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Melton, C., R.L. Judson, and R. Blelloch. 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463 (7281): 621–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dvinge, H., A. Git, S. Gräf, M. Salmon-Divon, C. Curtis, A. Sottoriva, Y. Zhao, M. Hirst, J. Armisen, E.A. Miska, S.F. Chin, E. Provenzano, G. Turashvili, A. Green, I. Ellis, S. Aparicio, and C. Caldas. 2013. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497 (7449): 378–382.

    CAS  PubMed  Google Scholar 

  19. Amaral, A.E.D., M.P. Rode, J. Cisilotto, T.E.D. Silva, J. Fischer, C. Matiollo, E.C. Morais Rateke, J.L. Narciso-Schiavon, L.L. Schiavon, and T.B. Creczynski-Pasa. 2018. MicroRNA profiles in serum samples from patients with stable cirrhosis and miRNA-21 as a predictor of transplant-free survival. Pharmacological Research 134: 179–192.

    CAS  PubMed  Google Scholar 

  20. Tacke, F., C. Roderburg, F. Benz, D.V. Cardenas, M. Luedde, H.J. Hippe, N. Frey, M. Vucur, J. Gautheron, A. Koch, C. Trautwein, and T. Luedde. 2014. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Critical Care Medicine 42 (5): 1096–1104.

    CAS  PubMed  Google Scholar 

  21. Ge, C., J. Liu, and S. Dong. 2018. miRNA-214 protects sepsis-induced myocardial injury. Shock 50 (1): 112–118.

    CAS  PubMed  Google Scholar 

  22. Ma, H., X. Wang, T. Ha, M. Gao, L. Liu, R. Wang, K. Yu, J.H. Kalbfleisch, R.L. Kao, D.L. Williams, and C. Li. 2016. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κB activation and p53-mediated apoptotic signaling. The Journal of Infectious Diseases 214 (11): 1773–1783.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, H., Y. Bei, S. Shen, P. Huang, J. Shi, J. Zhang, Q. Sun, Y. Chen, Y. Yang, T. Xu, X. Kong, and J. Xiao. 2016. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. Journal of Molecular and Cellular Cardiology 94: 43–53.

    PubMed  Google Scholar 

  24. Grieco, F.A., G. Sebastiani, J. Juan-Mateu, O. Villate, L. Marroqui, L. Ladrière, K. Tugay, R. Regazzi, M. Bugliani, P. Marchetti, F. Dotta, and D.L. Eizirik. 2017. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-cells. Diabetes 66 (1): 100–112.

    PubMed  Google Scholar 

  25. Hu, R., and R.M. O’Connell. 2012. MiR-23b is a safeguard against autoimmunity. Nature Medicine 18 (7): 1009–1010, 2017.

    CAS  PubMed  Google Scholar 

  26. Zheng, J., H.Y. Jiang, J. Li, H.C. Tang, X.M. Zhang, X.R. Wang, J.T. Du, H.B. Li, and G. Xu. 2012. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy 67 (3): 362–370.

    CAS  PubMed  Google Scholar 

  27. Zhu, S., W. Pan, X. Song, Y. Liu, X. Shao, Y. Tang, D. Liang, D. He, H. Wang, W. Liu, Y. Shi, J.B. Harley, N. Shen, and Y. Qian. 2012. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nature Medicine 18 (7): 1077–1086.

    CAS  PubMed  Google Scholar 

  28. Wu, M., J.T. Gu, B. Yi, Z.Z. Tang, and G.C. Tao. 2015. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Experimental and Therapeutic Medicine 9 (4): 1125–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoyt, C.C., S.M. Richardson-Burns, R.J. Goody, B.A. Robinson, R.L. Debiasi, and K.L. Tyler. 2005. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. Journal of Virology 79 (5): 2743–2753.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao, C., C. Yin, Y. Chai, H. Jin, L. Wang, and S. Shou. 2018. Ulinastatin mediates suppression of regulatory T cells through TLR4/NF-κB signaling pathway in murine sepsis. International Immunopharmacology 64: 411–423.

    CAS  PubMed  Google Scholar 

  31. Hobai, I.A., J. Edgecomb, K. LaBarge, and W.S. Colucci. 2015. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43 (1): 3–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, H., H.Y. Wang, R. Bassel-Duby, D.L. Maass, W.E. Johnston, J.W. Horton, and W. Tao. 2007. Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. American Journal of Physiology. Heart and Circulatory Physiology 292 (5): H2408–H2416.

    CAS  PubMed  Google Scholar 

  33. Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. The Journal of Clinical Investigation 107 (1): 13–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheehan, M., H.R. Wong, P.W. Hake, and B. Zingarelli. 2003. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Critical Care Medicine 31 (9): 2263–2270.

    CAS  PubMed  Google Scholar 

  35. Zheng, Z., H. Ma, X. Zhang, F. Tu, X. Wang, T. Ha, M. Fan, L. Liu, J. Xu, K. Yu, R. Wang, J. Kalbfleisch, R. Kao, D. Williams, and C. Li. 2017. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. The Journal of Infectious Diseases 215 (9): 1396–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brudecki, L., D.A. Ferguson, D. Yin, G.D. Lesage, C.E. McCall, and M. El Gazzar. 2012. Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infection and Immunity 80 (2): 602–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon, S.J., S.J. Kim, and S.M. Lee. 2017. Overexpression of HO-1 contributes to sepsis-induced immunosuppression by modulating the Th1/Th2 balance and regulatory T-cell function. The Journal of Infectious Diseases 215 (10): 1608–1618.

    CAS  PubMed  Google Scholar 

  38. Zhang, H., Y. Caudle, A. Shaikh, B. Yao, and D. Yin. 2018. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomedicine & Pharmacotherapy 103: 869–878.

    CAS  Google Scholar 

  39. Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: Myocardial depression in sepsis and septic shock. Critical Care 6 (6): 500–508.

    PubMed  PubMed Central  Google Scholar 

  40. Chagnon, F., C.N. Metz, R. Bucala, and O. Lesur. 2005. Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circulation Research 96 (10): 1095–1102.

    CAS  PubMed  Google Scholar 

  41. Alves-Filho, J.C., A. de Freitas, F. Spiller, F.O. Souto, and C.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.

    CAS  PubMed  Google Scholar 

  42. Cavaillon, J.M., and M. Adib-Conquy. 2005. Monocytes/macrophages and sepsis. Critical Care Medicine 33: S506–S509.

    PubMed  Google Scholar 

  43. O’Neill, L.A., F.J. Sheedy, and C.E. McCoy. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nature Reviews. Immunology 11 (3): 163–175.

    PubMed  Google Scholar 

  44. Williams, D.L., T. Ha, C. Li, J.H. Kalbfleisch, J. Schweitzer, W. Vogt, and I.W. Browder. 2003. Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Critical Care Medicine 31 (6): 1808–1818.

    PubMed  Google Scholar 

  45. Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195 (2): 672–682.

    CAS  Google Scholar 

  46. Ha, T., C. Lu, L. Liu, F. Hua, Y. Hu, J. Kelley, K. Singh, R.L. Kao, J. Kalbfleisch, D.L. Williams, X. Gao, and C. Li. 2010. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism. American Journal of Physiology. Heart and Circulatory Physiology 298 (3): H984–H991.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Medzhitov, R., P. Preston-Hurlburt, and C.A.J. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (6640): 394–397.

    CAS  PubMed  Google Scholar 

  48. Nevière, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory and Critical Care Medicine 163 (1): 218–225.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81871593 to YFC), Theory E Emergency Medical Research Fund of China (Grant No. R2015026 to CC), and Tianjin Medical University General Hospital Fund of China (Grant No. ZYYFY2015010 to CC, ZYYFY2016026 to YZ).

Author information

Authors and Affiliations

Authors

Contributions

CC performed experiments, analyzed data, prepared figures, and wrote the manuscript. YZ, LJW, YFC, and STS performed experiments and analyzed data. CFY performed the histological examination of the heart tissues. HJ designed experiments, analyzed data, prepared figures, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Heng Jin.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest.

Ethics Approval and Consent to Participate

All experimental manipulations were undertaken in accordance with the Guide for the Care and Use of Medical Laboratory Animals (Ministry of Health, P.R. China, 1998), with the approval of the Scientific Investigation Board, Tianjin Medical University General Hospital, Tianjin, China.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Zhang, Y., Chai, Y. et al. Attenuation of Sepsis-Induced Cardiomyopathy by Regulation of MicroRNA-23b Is Mediated Through Targeting of MyD88-Mediated NF-κB Activation. Inflammation 42, 973–986 (2019). https://doi.org/10.1007/s10753-019-00958-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-00958-7

KEY WORDS

Navigation