Advertisement

Inflammation

pp 1–14 | Cite as

Cysteine thiol oxidation on SIRT2 regulates inflammation in obese mice with sepsis

  • Xianfeng Wang
  • Nancy L. Buechler
  • David L. Long
  • Cristina M. Furdui
  • Barbara K. Yoza
  • Charles E. McCall
  • Vidula Vachharajani
ORIGINAL ARTICLE

Abstract

Obesity increases morbidity and mortality in acute illnesses such as sepsis and septic shock. We showed previously that the early/hyper-inflammatory phase of sepsis is exaggerated in obese mice with sepsis; sirtuin 2 (SIRT2) modulates sepsis inflammation in obesity. Evidence suggests that obesity with sepsis is associated with increased oxidative stress. It is unknown whether exaggerated hyper-inflammation of obesity with sepsis modulates the SIRT2 function in return. We showed recently that SIRT6 oxidation during hyper-inflammation of sepsis modulates its glycolytic function. This study tested the hypothesis that increased oxidative stress and direct SIRT2 oxidation exaggerate hyper-inflammation in obesity with sepsis. Using spleen and liver tissue from mice with diet-induced obesity (DIO) we studied oxidized vs. total SIRT2 expression during hyper- and hypo-inflammation of sepsis. To elucidate the mechanism of SIRT2 oxidation (specific modifications of redox-sensitive cysteines) and its effect on inflammation, we performed site-directed mutations of redox-sensitive cysteines Cys221 and Cys224 on SIRT2 to serine (C221S and C224S), transfected HEK293 cells with mutants or WT SIRT2, and studied SIRT2 enzymatic activity and NFĸBp65 deacetylation. Finally, we studied the effect of SIRT2 mutation on LPS-induced inflammation using RAW 264.7 macrophages. In an inverse relationship, total SIRT2 decreased while oxidized SIRT2 expression increased during hyper-inflammation and SIRT2 was unable to deacetylate NFĸBp65 with increased oxidative stress of obesity with sepsis. Mechanistically, both the mutants (C221S and C224S) show decreased (1) SIRT2 enzymatic activity, (2) deacetylation of NFĸBp65, and (3) anti-inflammatory activity in response to LPS vs. WT SIRT2. Direct oxidation modulates SIRT2 function during hyper-inflammatory phase of obesity with sepsis via redox sensitive cysteines.

KEY WORDS

obesity sepsis septic shock hyper-inflammation oxidative stress 

Abbreviations

CLP

Cecal ligation and puncture

CTRL

Control diet mice

Cys

Cysteine

DIO

Diet induced obesity

LPS

Lipopolysaccharide

NAD

Nicotinamide dinucleotide

NFĸB

Nuclear factor kappa B

Ob/ob

B6.Cg-Lepob/J

PM

Peritoneal macrophages

SIRT

Sirtuin

SIRT1

Sirtuin 1

SIRT2

Sirtuin 2

TBH

Tertiary-butyl hydroperoxide

WT

Wild type (lean)

BP1

Biotin-1,3-cyclopentanedione

NEM

N-ethyl maleimide

Notes

Acknowledgements

The plasmids were gifted to us by Addgene; pcDNA3β-FLAG-CBP-HA was a gift from Tso-Pang Yao (Addgene plasmid #32908); pCMV4 NFĸB p65 was a gift from Warner Greene (Addgene plasmid #21966). Wild-type plasmid SIRT2 flag was a gift from Eric Verdin (Addgene plasmid #13813).

Author Contributions

Concept and design: VTV and CF; data collection: XW, NB, DL and VTV; data analysis and interpretation: VTV, XW, CEM and CF; generating the manuscript: VTV, XW, CEM and CF.

Funding Information

This work was supported by NIH grants: Vidula T. Vachharajani, R01GM099807; Charles E McCall, (1) R01AI065791, (2) R01AI079144 (3) 1R35GM126922.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that the submitted work was not carried out in the presence of any personal, professional or financial relationships that could potentially be construed as a conflict of interest.

References

  1. 1.
    Marshall, J.C. 2014. Why have clinical trials in sepsis failed? Trends in Molecular Medicine 20 (4): 195–203.  https://doi.org/10.1016/j.molmed.2014.01.007.CrossRefPubMedGoogle Scholar
  2. 2.
    Torio, C. M., and B. J. Moore. 2006. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief #204. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD).Google Scholar
  3. 3.
    Boomer, J.S., K. To, K.C. Chang, O. Takasu, D.F. Osborne, A.H. Walton, T.L. Bricker, et al. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306 (23): 2594–2605.  https://doi.org/10.1001/jama.2011.1829.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. The New England Journal of Medicine 348 (2): 138–150.  https://doi.org/10.1056/NEJMra021333. CrossRefPubMedGoogle Scholar
  5. 5.
    Vachharajani, V.T., T. Fu Liu, C.M. Brown, X. Wang, N.L. Buechler, J.D. Wells, B.K. Yoza, and C.E. McCall. 2014. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. Journal of Leukocyte Biology.  https://doi.org/10.1189/jlb.3MA0114-034RR.
  6. 6.
    Wang, X., N.L. Buechler, A. Martin, J. Wells, B. Yoza, C.E. McCall, and V. Vachharajani. 2016. Sirtuin-2 regulates sepsis inflammation in ob/ob mice. PLoS One 11 (8): e0160431.  https://doi.org/10.1371/journal.pone.0160431.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Calle, E.E., C. Rodriguez, K. Walker-Thurmond, and M.J. Thun. 2003. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. The New England journal of medicine 348 (17): 1625–1638.  https://doi.org/10.1056/NEJMoa021423. CrossRefPubMedGoogle Scholar
  8. 8.
    Goncalves Damascena, K., C. Batisti Ferreira, P. Dos Santos Teixeira, B. Madrid, A. Goncalves, C. Cordova, O. de Toledo Nobrega, and A. Pimentel Ferreira. 2017. Functional capacity and obesity reflect the cognitive performance of older adults living in long-term care facilities. Psychogeriatrics 17 (6): 439–445.  https://doi.org/10.1111/psyg.12273.CrossRefPubMedGoogle Scholar
  9. 9.
    Oguri, M., T. Fujimaki, H. Horibe, K. Kato, K. Matsui, I. Takeuchi, and Y. Yamada. 2017. Obesity-related changes in clinical parameters and conditions in a longitudinal population-based epidemiological study. Obes Res Clin Pract 11 (3): 299–314.  https://doi.org/10.1016/j.orcp.2016.08.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang, H.E., R. Griffin, S. Judd, N.I. Shapiro, and M.M. Safford. 2013. Obesity and risk of sepsis: A population-based cohort study. Obesity (Silver Spring) 21 (12): E762–E769.  https://doi.org/10.1002/oby.20468. CrossRefGoogle Scholar
  11. 11.
    Arabi, Y. M., S. I. Dara, H. M. Tamim, A. H. Rishu, A. Bouchama, M. K. Khedr, D. Feinstein et al. . 2013. Clinical characteristics, sepsis interventions and outcomes in the obese patients with septic shock: An international multicenter cohort study. Critical Care 17 (2):R72.  https://doi.org/10.1186/cc12680.
  12. 12.
    Prescott, H.C., V.W. Chang, J.M. O'Brien Jr., K.M. Langa, and T. Iwashyna. 2014. Obesity and 1-year outcomes in older Americans with severe sepsis. Critical Care Medicine.  https://doi.org/10.1097/CCM.0000000000000336.
  13. 13.
    Robinson, M.K., K.M. Mogensen, J.D. Casey, C.K. McKane, T. Moromizato, J.D. Rawn, and K.B. Christopher. 2015. The relationship among obesity, nutritional status, and mortality in the critically ill. Critical Care Medicine 43 (1): 87–100.  https://doi.org/10.1097/CCM.0000000000000602.CrossRefPubMedGoogle Scholar
  14. 14.
    Ross, P.A., C.J. Newth, D. Leung, R.C. Wetzel, and R.G. Khemani. 2016. Obesity and mortality risk in critically ill children. Pediatrics 137 (3): e20152035.  https://doi.org/10.1542/peds.2015-2035.CrossRefPubMedGoogle Scholar
  15. 15.
    Trivedi, V., C. Bavishi, and R. Jean. 2015. Impact of obesity on sepsis mortality: A systematic review. Journal of Critical Care 30 (3): 518–524.  https://doi.org/10.1016/j.jcrc.2014.12.007.CrossRefPubMedGoogle Scholar
  16. 16.
    Vachharajani, V., C. Cunningham, B. Yoza, J. Carson Jr., T.J. Vachharajani, and C. McCall. 2012. Adiponectin-deficiency exaggerates sepsis-induced microvascular dysfunction in the mouse brain. Obesity (Silver Spring) 20 (3): 498–504.  https://doi.org/10.1038/oby.2011.316. CrossRefGoogle Scholar
  17. 17.
    Vachharajani, V., S. Vital, and J. Russell. 2010. Modulation of circulating cell-endothelial cell interaction by erythropoietin in lean and obese mice with cecal ligation and puncture. Pathophysiology : the official journal of the International Society for Pathophysiology / ISP 17 (1): 9–18.  https://doi.org/10.1016/j.pathophys.2009.04.002. CrossRefGoogle Scholar
  18. 18.
    Vachharajani, V., S. Vital, J. Russell, L.K. Scott, and D.N. Granger. 2006. Glucocorticoids inhibit the cerebral microvascular dysfunction associated with sepsis in obese mice. Microcirculation 13 (6): 477–487.  https://doi.org/10.1080/10739680600777599.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, X., N.L. Buechler, B.K. Yoza, C.E. McCall, and V. Vachharajani. 2016. Adiponectin treatment attenuates inflammatory response during early sepsis in obese mice. Journal of Inflammation Research 9: 167–174.  https://doi.org/10.2147/JIR.S119021. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang, X., N.L. Buechler, B.K. Yoza, C.E. McCall, and V.T. Vachharajani. 2015. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring) 23 (6): 1209–1217.  https://doi.org/10.1002/oby.21086.CrossRefGoogle Scholar
  21. 21.
    Liu, T.F., V. Vachharajani, P. Millet, M.S. Bharadwaj, A.J. Molina, and C.E. McCall. 2015. Sequential actions of SIRT1-RELB-SIRT3 coordinate nuclear-mitochondrial communication during immunometabolic adaptation to acute inflammation and sepsis. The Journal of Biological Chemistry 290 (1): 396–408.  https://doi.org/10.1074/jbc.M114.566349.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu, T.F., V.T. Vachharajani, B.K. Yoza, and C.E. McCall. 2012. NAD+−dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. The Journal of Biological Chemistry 287 (31): 25758–25769.  https://doi.org/10.1074/jbc.M112.362343.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu, T.F., B.K. Yoza, M. El Gazzar, V.T. Vachharajani, and C.E. McCall. 2011. NAD+−dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. The Journal of Biological Chemistry 286 (11): 9856–9864.  https://doi.org/10.1074/jbc.M110.196790.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kauppinen, A., T. Suuronen, J. Ojala, K. Kaarniranta, and A. Salminen. 2013. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cellular Signalling 25 (10): 1939–1948.  https://doi.org/10.1016/j.cellsig.2013.06.007.CrossRefPubMedGoogle Scholar
  25. 25.
    Schug, T.T., and X. Li. 2011. Sirtuin 1 in lipid metabolism and obesity. Annals of Medicine 43 (3): 198–211.  https://doi.org/10.3109/07853890.2010.547211.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vachharajani, V.T., T. Liu, X. Wang, J.J. Hoth, B.K. Yoza, and C.E. McCall. 2016. Sirtuins link inflammation and metabolism. Journal of Immunology Research 2016: 8167273.  https://doi.org/10.1155/2016/8167273.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haigis, M.C., and D.A. Sinclair. 2010. Mammalian sirtuins: Biological insights and disease relevance. Annual Review of Pathology 5: 253–295.  https://doi.org/10.1146/annurev.pathol.4.110807.092250.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin, J., B. Sun, C. Jiang, H. Hong, and Y. Zheng. 2013. Sirt2 suppresses inflammatory responses in collagen-induced arthritis. Biochemical and Biophysical Research Communications 441 (4): 897–903.  https://doi.org/10.1016/j.bbrc.2013.10.153.CrossRefPubMedGoogle Scholar
  29. 29.
    North, B.J., and E. Verdin. 2007. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2 (8): e784.  https://doi.org/10.1371/journal.pone.0000784.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mariani, S., G. Di Rocco, G. Toietta, M.A. Russo, E. Petrangeli, and L. Salvatori. 2017. Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: Influence of obesity and hypoxia. Endocrine 57 (3): 455–463.  https://doi.org/10.1007/s12020-016-1170-8. CrossRefPubMedGoogle Scholar
  31. 31.
    Moschen, A.R., V. Wieser, R.R. Gerner, A. Bichler, B. Enrich, P. Moser, C.F. Ebenbichler, S. Kaser, and H. Tilg. 2013. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. Journal of Hepatology 59 (6): 1315–1322.  https://doi.org/10.1016/j.jhep.2013.07.027.CrossRefPubMedGoogle Scholar
  32. 32.
    Krishnan, J., C. Danzer, T. Simka, J. Ukropec, K.M. Walter, S. Kumpf, P. Mirtschink, et al. 2012. Dietary obesity-associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes & Development 26 (3): 259–270.  https://doi.org/10.1101/gad.180406.111. CrossRefGoogle Scholar
  33. 33.
    Buechler, N., X. Wang, B.K. Yoza, C.E. McCall, and V. Vachharajani. 2017. Sirtuin 2 regulates microvascular inflammation during sepsis. Journal of Immunology Research 2017: 2648946.  https://doi.org/10.1155/2017/2648946.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Haden, D.W., H.B. Suliman, M.S. Carraway, K.E. Welty-Wolf, A.S. Ali, H. Shitara, H. Yonekawa, and C.A. Piantadosi. 2007. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. American Journal of Respiratory and Critical Care Medicine 176 (8): 768–777.  https://doi.org/10.1164/rccm.200701-161OC.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Groeger, G., C. Quiney, and T.G. Cotter. 2009. Hydrogen peroxide as a cell-survival signaling molecule. Antioxidants & Redox Signaling 11 (11): 2655–2671.  https://doi.org/10.1089/ARS.2009.2728.CrossRefGoogle Scholar
  36. 36.
    Jung, S.B., C.S. Kim, Y.R. Kim, A. Naqvi, T. Yamamori, S. Kumar, A. Kumar, and K. Irani. 2013. Redox factor-1 activates endothelial SIRTUIN1 through reduction of conserved cysteine sulfhydryls in its deacetylase domain. PLoS One 8 (6): e65415.  https://doi.org/10.1371/journal.pone.0065415.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen, L., Y. Feng, Y. Zhou, W. Zhu, X. Shen, K. Chen, H. Jiang, and D. Liu. 2010. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1. Journal of Inorganic Biochemistry 104 (2): 180–185.  https://doi.org/10.1016/j.jinorgbio.2009.10.021.CrossRefPubMedGoogle Scholar
  38. 38.
    Kalous, K.S., S.L. Wynia-Smith, M.D. Olp, and B.C. Smith. 2016. Mechanism of Sirt1 NAD+−dependent protein deacetylase inhibition by cysteine S-nitrosation. The Journal of Biological Chemistry 291 (49): 25398–25410.  https://doi.org/10.1074/jbc.M116.754655.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Long, D., H. Wu, A.W. Tsang, L.B. Poole, B.K. Yoza, X. Wang, V. Vachharajani, C.M. Furdui, and C.E. McCall. 2017. The oxidative state of cysteine thiol 144 regulates the SIRT6 glucose homeostat. Scientific Reports 7 (1): 11005.  https://doi.org/10.1038/s41598-017-11388-6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zee, R.S., C.B. Yoo, D.R. Pimentel, D.H. Perlman, J.R. Burgoyne, X. Hou, M.E. McComb, C.E. Costello, R.A. Cohen, and M.M. Bachschmid. 2010. Redox regulation of sirtuin-1 by S-glutathiolation. Antioxidants & Redox Signaling 13 (7): 1023–1032.  https://doi.org/10.1089/ars.2010.3251.CrossRefGoogle Scholar
  41. 41.
    Vieira, A.A., M. Michels, D. Florentino, D.Z. Nascimento, G.T. Rezin, D.D. Leffa, J.J. Fortunato, et al. 2015. Obesity promotes oxidative stress and exacerbates sepsis-induced brain damage. Current Neurovascular Research 12 (2): 147–154.CrossRefPubMedGoogle Scholar
  42. 42.
    Furukawa, S., T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima, O. Nakayama, M. Makishima, M. Matsuda, and I. Shimomura. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation 114 (12): 1752–1761.  https://doi.org/10.1172/JCI21625.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Qian, J., C. Klomsiri, M.W. Wright, S.B. King, A.W. Tsang, L.B. Poole, and C.M. Furdui. 2011. Simple synthesis of 1,3-cyclopentanedione derived probes for labeling sulfenic acid proteins. Chemical Communication (Camb) 47 (32): 9203–9205.  https://doi.org/10.1039/c1cc12127h.CrossRefGoogle Scholar
  44. 44.
    Vachharajani, V., J.M. Russell, K.L. Scott, S. Conrad, K.Y. Stokes, L. Tallam, J. Hall, and D.N. Granger. 2005. Obesity exacerbates sepsis-induced inflammation and microvascular dysfunction in mouse brain. Microcirculation 12 (2): 183–194.CrossRefPubMedGoogle Scholar
  45. 45.
    Vachharajani, V.T., T. Liu, C.M. Brown, X. Wang, N.L. Buechler, J.D. Wells, B.K. Yoza, and C.E. McCall. 2014. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. Journal of Leukocyte Biology 96 (5): 785–796.  https://doi.org/10.1189/jlb.3MA0114-034RR.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang, X., Q. Cao, L. Yu, H. Shi, B. Xue, and H. Shi. 2016. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight 1 (19): e87748.  https://doi.org/10.1172/jci.insight.87748. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao, X., T. Sternsdorf, T.A. Bolger, R.M. Evans, and T.P. Yao. 2005. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Molecular and Cellular Biology 25 (19): 8456–8464.  https://doi.org/10.1128/MCB.25.19.8456-8464.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ballard, D.W., E.P. Dixon, N.J. Peffer, H. Bogerd, S. Doerre, B. Stein, and W.C. Greene. 1992. The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proceedings of the National Academy of Sciences of the United States of America 89 (5): 1875–1879.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    North, B.J., B.L. Marshall, M.T. Borra, J.M. Denu, and E. Verdin. 2003. The human Sir2 ortholog, SIRT2, is an NAD+−dependent tubulin deacetylase. Molecular Cell 11 (2): 437–444.CrossRefPubMedGoogle Scholar
  50. 50.
    Sherman, J.M., E.M. Stone, L.L. Freeman-Cook, C.B. Brachmann, J.D. Boeke, and L. Pillus. 1999. The conserved core of a human SIR2 homologue functions in yeast silencing. Molecular Biology of the Cell 10 (9): 3045–3059.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mayr, F.B., S. Yende, and D.C. Angus. 2014. Epidemiology of severe sepsis. Virulence 5 (1): 4–11.  https://doi.org/10.4161/viru.27372.CrossRefPubMedGoogle Scholar
  52. 52.
    Hotchkiss, R.S., and S. Opal. 2010. Immunotherapy for sepsis--a new approach against an ancient foe. The New England Journal of Medicine 363 (1): 87–89.  https://doi.org/10.1056/NEJMcibr1004371. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jung, U., K.E. Norman, K. Scharffetter-Kochanek, A.L. Beaudet, and K. Ley. 1998. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. The Journal of Clinical Investigation 102 (8): 1526–1533.  https://doi.org/10.1172/JCI119893.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Vachharajani, V., T. Liu, and C.E. McCall. 2014. Epigenetic coordination of acute systemic inflammation: Potential therapeutic targets. Expert Review of Clinical Immunology 10 (9): 1141–1150.  https://doi.org/10.1586/1744666X.2014.943192.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vachharajani, V., S. Vital, J. Russell, and D.N. Granger. 2007. Hypertonic saline and the cerebral microcirculation in obese septic mice. Microcirculation 14 (3): 223–231.  https://doi.org/10.1080/10739680601139153.CrossRefPubMedGoogle Scholar
  56. 56.
    Imai, S., and L. Guarente. 2014. NAD+ and sirtuins in aging and disease. Trends in Cell Biology 24 (8): 464–471.  https://doi.org/10.1016/j.tcb.2014.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Imai, S., and L. Guarente. 2010. Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends in Pharmacological Sciences 31 (5): 212–220.  https://doi.org/10.1016/j.tips.2010.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chang, J., S.L. Kunkel, and C.H. Chang. 2009. Negative regulation of MyD88-dependent signaling by IL-10 in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 106 (43): 18327–18332.  https://doi.org/10.1073/pnas.0905815106.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Li, Y. P., J. Huang, S. G. Huang, Y. G. Xu, Y. Y. Xu, J. Y. Liao, X. Feng, X. G. Zhang, J. H. Wang, and J. Wang. 2014. The compromised inflammatory response to bacterial components after pediatric cardiac surgery is associated with cardiopulmonary bypass-suppressed toll-like receptor signal transduction pathways. Journal of Critical Care 29 (2):312 e317–313.  https://doi.org/10.1016/j.jcrc.2013.10.008.
  60. 60.
    Eo, S.H., S.Y. Choi, and S.J. Kim. 2016. PEP-1-SIRT2-induced matrix metalloproteinase-1 and -13 modulates type II collagen expression via ERK signaling in rabbit articular chondrocytes. Experimental Cell Research 348 (2): 201–208.  https://doi.org/10.1016/j.yexcr.2016.09.024.CrossRefPubMedGoogle Scholar
  61. 61.
    Eo, S.H., D.W. Kim, S.Y. Choi, H.A. Kim, and S.J. Kim. 2015. PEP-1-SIRT2 causes dedifferentiation and COX-2 expression via the MAPK pathways in rabbit articular chondrocytes. Experimental Cell Research 339 (2): 351–359.  https://doi.org/10.1016/j.yexcr.2015.09.001.CrossRefPubMedGoogle Scholar
  62. 62.
    Jeong, S.G., and G.W. Cho. 2017. The tubulin deacetylase sirtuin-2 regulates neuronal differentiation through the ERK/CREB signaling pathway. Biochemical and Biophysical Research Communications 482 (1): 182–187.  https://doi.org/10.1016/j.bbrc.2016.11.031.CrossRefPubMedGoogle Scholar
  63. 63.
    Wu, D., W. Lu, Z. Wei, M. Xu, and X. Liu. 2018. Neuroprotective effect of Sirt2-specific inhibitor AK-7 against acute cerebral ischemia is P38 activation-dependent in mice. Neuroscience 374: 61–69.  https://doi.org/10.1016/j.neuroscience.2018.01.040.CrossRefPubMedGoogle Scholar
  64. 64.
    Aziz, M., N.E. Holodick, T.L. Rothstein, and P. Wang. 2017. B-1a cells protect mice from sepsis: Critical role of CREB. Journal of Immunology 199 (2): 750–760.  https://doi.org/10.4049/jimmunol.1602056.CrossRefGoogle Scholar
  65. 65.
    Dryden, S.C., F.A. Nahhas, J.E. Nowak, A.S. Goustin, and M.A. Tainsky. 2003. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Molecular and Cellular Biology 23 (9): 3173–3185.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    North, B.J., and E. Verdin. 2007. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. The Journal of Biological Chemistry 282 (27): 19546–19555.  https://doi.org/10.1074/jbc.M702990200.CrossRefPubMedGoogle Scholar
  67. 67.
    Pandithage, R., R. Lilischkis, K. Harting, A. Wolf, B. Jedamzik, J. Luscher-Firzlaff, J. Vervoorts, et al. 2008. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. The Journal of Cell Biology 180 (5): 915–929.  https://doi.org/10.1083/jcb.200707126. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ramakrishnan, G., G. Davaakhuu, L. Kaplun, W.C. Chung, A. Rana, A. Atfi, L. Miele, and G. Tzivion. 2014. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. The Journal of Biological Chemistry 289 (9): 6054–6066.  https://doi.org/10.1074/jbc.M113.537266.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hu, S., H. Liu, Y. Ha, X. Luo, M. Motamedi, M.P. Gupta, J.X. Ma, R.G. Tilton, and W. Zhang. 2015. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radical Biology & Medicine 79: 176–185.  https://doi.org/10.1016/j.freeradbiomed.2014.11.011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xianfeng Wang
    • 1
  • Nancy L. Buechler
    • 1
    • 3
  • David L. Long
    • 3
  • Cristina M. Furdui
    • 3
  • Barbara K. Yoza
    • 3
    • 4
  • Charles E. McCall
    • 3
  • Vidula Vachharajani
    • 1
    • 2
  1. 1.Department of Anesthesiology, Section on Critical Care, Department of Medicine, Section on Molecular MedicineWake Forest School of MedicineWinston-SalemUSA
  2. 2.Department of Medicine, Section on Molecular MedicineWake Forest School of MedicineWinston-SalemUSA
  3. 3.Department of Internal MedicineWake Forest School of MedicineWinston-SalemUSA
  4. 4.Department of SurgeryWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations