Skip to main content
Log in

MHTP, 2-Methoxy-4-(7-methoxy-1,2,3,4-tetrahydroisoquinolin-1-yl) phenol, a Synthetic Alkaloid, Induces IFN-γ Production in Murine Model of Ovalbumin-Induced Pulmonary Allergic Inflammation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

MHTP [2-methoxy-4-(7-methoxy-1,2,3,4-tetrahydroisoquinolin-1-yl) phenol], a synthetic isoquinolinic alkaloid, presented anti-inflammatory activity in several experimental models of acute inflammation as lipopolysaccharide (LPS)-induced acute lung injury and phlogistic agent-induced edema and presented low preclinical toxicity. The aim of this study was to determine the MHTP effect on ovalbumin (OVA)-induced pulmonary allergic inflammation. In other to realize this study, female BALFB/c mice were sensitized and challenged with OVA (OVA group) and treated with MHTP (MHTP group) by nasal instillation. Inflammatory, allergic, and immunomodulatory parameters such as migration of inflammatory cells to the lung tissue, pulmonary histological analysis, serum level of IgE-allergen specific, cytokine secretion, and lung T cell population characterization were analyzed and the data were considered statistically significant with p < 0.05. OVA-sensitized and OVA-challenged and MHTP (5.0 mg/kg)-treated mice presented reduction on total leukocyte migration into the bronchoalveolar lavage (BALF) dependent of lymphocyte and eosinophil migration (p < 0.001 and p < 0.01) as compared with the OVA group. Flow cytometric analysis showed that MHTP treatment decreased the percentage of granulocytes (p < 0.001) into the BALF and lung tissue histological analyzes demonstrated that the MHTP treatment decreased leukocyte migration and mucus production. In addition, treatment with MHTP decreased the number of CD3+CD4+ T cells independently of CD8+ T cell reduction into the BALF. The treatment also reduced significantly (p < 0.05) the serum level of IgE-OVA specific followed by reduction of IL-4, IL-13, and IL-17 production. Surprisingly, the MHTP treatment increased significantly (p < 0.05) the IFN-γ production in the BALF of these animals. Therefore, the results presented here showed that MHTP treatment, by nasal instillation, in a mouse model of OVA-induced pulmonary allergy has anti-allergic and immunomodulatory effects dependent on a Th1-skewed cytokine production that ameliorate the pulmonary allergic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. GINA. 2017. Pocket guide for asthma management and prevention. GloBALF Initiative for Asthma file:///C: 1–29.

  2. Holgate, Stephen T., Sally Wenzel, Dirkje S. Postma, Scott T. Weiss, Harald Renz, and Peter D. Sly. 2015. Asthma. Nature Reviews Disease Primers 1. Nature Publishing Group: 15025. https://doi.org/10.1038/nrdp.2015.25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lambrecht, Bart N., and Hamida Hammad. 2015. The immunology of asthma. Nature Immunology 16: 45–56. https://doi.org/10.1038/ni.3049.

    Article  CAS  PubMed  Google Scholar 

  4. Tabatabaian, Farnaz, and Dennis K. Ledford. 2018. Omalizumab for severe asthma: Toward personalized treatment based on biomarker profile and clinical history. Journal of Asthma and Allergy 11. Dove Press: 53–61. https://doi.org/10.2147/JAA.S107982.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gould, Hannah J., and Brian J. Sutton. 2008. IgE in allergy and asthma today. Nature Reviews Immunology 8: 205–217. https://doi.org/10.1038/nri2273.

    Article  CAS  PubMed  Google Scholar 

  6. Gour, Naina, and Marsha Wills-Karp. 2015. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 75: 68–78. https://doi.org/10.1016/j.cyto.2015.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fahy, John V. 2015. Type 2 inflammation in asthma--present in most, absent in many. Nature Reviews. Immunology 15: 57–65. https://doi.org/10.1038/nri3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wynn, Thomas A. 2015. Type 2 cytokines: Mechanisms and therapeutic strategies. Nature Reviews Immunology 15. Nature Publishing Group: 271–282. https://doi.org/10.1038/nri3831.

    Article  CAS  PubMed  Google Scholar 

  9. Szabo, S.J. 2002. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295: 338–342. https://doi.org/10.1126/science.1065543.

    Article  CAS  PubMed  Google Scholar 

  10. Biller, H., B. Bade, H. Matthys, W. Luttmann, and J.C. Virchow. 2001. Interferon-gamma secretion of peripheral blood CD8+ T lymphocytes in patients with bronchial asthma: In vitro stimulus determines cytokine production. Clinical and Experimental Immunology 126. Wiley-Blackwell: 199–205. https://doi.org/10.1046/J.1365-2249.2001.01666.X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tumes, Damon J., Magdalene Papadopoulos, Yusuke Endo, Atsushi Onodera, Kiyoshi Hirahara, and Toshinori Nakayama. 2017. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunological Reviews 278: 8–19. https://doi.org/10.1111/imr.12560.

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro-Filho, Jaime, Andrea Surrage Calheiros, Adriana Vieira-de-Abreu, Katharinne Ingrid Moraes de Carvalho, Diego da Silva Mendes, Christianne Bandeira Melo, Marco Aurélio Martins, Celidarque da Silva Dias, Márcia Regina Piuvezam, and Patrícia T. Bozza. 2013. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma. Toxicology and Applied Pharmacology 273: 19–26. https://doi.org/10.1016/j.taap.2013.08.015.

    Article  CAS  PubMed  Google Scholar 

  13. Bezerra-Santos, C.R., F.M.P. BALFestieri, B. Rossi-Bergmann, L.M.T. Peçanha, and M.R. Piuvezam. 2004. Cissampelos sympodialis Eichl. (Menispermaceae): Oral treatment decreases IgE levels and induces a Th1-skewed cytokine production in ovalbumin-sensitized mice. Journal of Ethnopharmacology 95: 191–197. https://doi.org/10.1016/j.jep.2004.06.037.

    Article  CAS  PubMed  Google Scholar 

  14. Bezerra-Santos, Cláudio R., Adriana Vieira-de-Abreu, José Maria Barbosa-Filho, Christianne Bandeira-Melo, Marcia R. Piuvezam, and Patrícia T. Bozza. 2006. Anti-allergic properties of Cissampelos sympodialis and its isolated alkaloid warifteine. International Immunopharmacology 6: 1152–1160. https://doi.org/10.1016/j.intimp.2006.02.007.

    Article  CAS  PubMed  Google Scholar 

  15. Vieira, Giciane C., Josenilson F. De Lima, Regina C.B.Q. De Figueiredo, Sandra R. Mascarenhas, Claudio R. Bezerra-Santos, and Marcia R. Piuvezam. 2013. Inhaled cissampelos sympodialis down-regulates airway allergic reaction by reducing lung CD3+T cells. Phytotherapy Research 27: 916–925. https://doi.org/10.1002/ptr.4791.

    Article  CAS  PubMed  Google Scholar 

  16. de Oliveira, Pacheco, Maria Talita, Theresa Raquel de Oliveira Ramalho, Laércia Karla Liege Paiva Ferreira, Ana Luísa Araújo Lima, Manuela Barbosa Cordeiro, Hermann Ferreira Costa, Luís Cézar Rodrigues, and Marcia Regina Piuvezam. 2015. Synthesis, toxicity study and anti-inflammatory effect of MHTP, a new tetrahydroisoquinolinic alkaloid. Immunopharmacology and Immunotoxicology 37: 400–412. https://doi.org/10.3109/08923973.2015.1070173.

    Article  CAS  Google Scholar 

  17. Tsoyi, Konstantin, Hye Jung Kim, Jae Soo Shin, Dal Hyun Kim, Hee Jeong Cho, Sung Sook Lee, Sun Kil Ahn, et al. 2008. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinolinic alkaloid, CKD712, in cells activated with lipopolysacchride. Cellular Signalling 20: 1839–1847. https://doi.org/10.1016/j.cellsig.2008.06.012.

    Article  CAS  PubMed  Google Scholar 

  18. Kang, Y.J., B.K. Lee, Y.S. Lee, H.G. Seo, M.K. Park, H.J. Kim, H.S. Pyo, et al. 2003. Suppression of tumor necrosis factor-α and inducible nitric oxide synthase gene expression by THI 52, a new synthetic naphthyl-benzylisoquinolinic alkaloid. Biochemical Pharmacology 65: 457–464.

    Article  CAS  PubMed  Google Scholar 

  19. Sherwin, Chris M., Stine B. Christiansen, Ian J. Duncan, Hans W. Erhard, Don C. Lay, Joy A. Mench, Cheryl E. O’Connor, and J. Carol Petherick. 2003. Guidelines for the ethical use of animals in applied ethology studies. Applied Animal Behaviour Science 81: 291–305. https://doi.org/10.1016/S0168-1591(02)00288-5.

    Article  Google Scholar 

  20. Galvão, José Guilherme F.M., Luiz Henrique Agra Cavalcante-Silva, Deyse Cristina M. Carvalho, Laércia Karla D.P. Ferreira, Talissa Mozzini Monteiro, Adriano Francisco Alves, Larissa Adilis M.P. Ferreira, Francisco Allysson A.F. Gadelha, Marcia Regina Piuvezam, and Sandra Rodrigues-Mascarenhas. 2017. Ouabain attenuates ovalbumin-induced airway inflammation. Inflammation Research 66: 1117–1130. https://doi.org/10.1007/s00011-017-1092-9.

    Article  CAS  PubMed  Google Scholar 

  21. Rijt, van, S. Leonie, Harmjan Kuipers, Nanda Vos, Daniëlle Hijdra, Henk C. Hoogsteden, and Bart N. Lambrecht. 2004. A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. Journal of Immunological Methods 288: 111–121. https://doi.org/10.1016/j.jim.2004.03.004.

    Article  CAS  PubMed  Google Scholar 

  22. Bisset, Leslie R., and Peter Schmid-Grendelmeier. 2005. Chemokines and their receptors in the pathogenesis of allergic asthma: Progress and perspective. Current Opinion in Pulmonary Medicine 11: 35–42.

    Article  CAS  PubMed  Google Scholar 

  23. GINA. 2017. GloBALF Strategy For Asthma Management and Prevention. GloBALF Initiative for Asthma: http://ginasthma.org/2017-gina-report-gloBALF-strat. doi:https://doi.org/10.1183/09031936.00138707.

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein, Lee H., Corinna Weber-Schöndorfer, and Matitiahu Berkovitch. 2015. Antiasthmatic and cough medication. In Drugs during pregnancy and lactation, 65–74. Elsevier. doi:https://doi.org/10.1016/B978-0-12-408078-2.00004-4.

    Chapter  Google Scholar 

  25. Stöckigt, Joachim, Andrey P. Antonchick, Wu Fangrui, and Herbert Waldmann. 2011. The Pictet-Spengler reaction in nature and in organic chemistry. Angewandte Chemie - International Edition 50: 8538–8564. https://doi.org/10.1002/anie.201008071.

    Article  CAS  PubMed  Google Scholar 

  26. Leung, James S., David W. Johnson, Arissa J. Sperou, Jennifer Crotts, Erik Saude, Lisa Hartling, and Antonia Stang. 2017. A systematic review of adverse drug events associated with administration of common asthma medications in children. Edited by Imti Choonara. PLOS ONE 12: e0182738. https://doi.org/10.1371/journal.pone.0182738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fraga Righetti, Renato, Patricia Angeli da Silva Pigati, Samantha Souza Possa, Anelize Sartori Alves dos Santos, Nathalia Montouro Pinheiro Aless, et al. 2014. New pharmacological targets for asthma drug development. Journal of Allergy & Therapy 05. OMICS International: 1–13. https://doi.org/10.4172/2155-6121.1000170.

    Article  Google Scholar 

  28. Bezerra-santos, Claudio R., Adriana Vieira-de-abreu, Giciane Carvalho, Jaime R. Filho, José Maria Barbosa-filho, Ana Lucia, Marco Aurelio, International Immunopharmacology, et al. 2012. Effectiveness of Cissampelos sympodialis and its isolated alkaloid warifteine in airway hyperreactivity and lung remodeling in a mouse model of asthma. International Immunopharmacology 13. Elsevier B.V.: 148–155. https://doi.org/10.1016/j.intimp.2012.03.014.

    Article  CAS  PubMed  Google Scholar 

  29. Rayees, Sheikh, Ulaganathan MaBALFirajan, Wajid Waheed Bhat, Shafaq Rasool, Rafiq Ahmad Rather, Lipsa Panda, Naresh Kumar Satti, Surrinder Kumar Lattoo, BALFaram Ghosh, and Gurdarshan Singh. 2015. Therapeutic effects of R8, a semi-synthetic analogue of Vasicine, on murine model of allergic airway inflammation via STAT6 inhibition. International Immunopharmacology 26: 246–256. https://doi.org/10.1016/j.intimp.2015.03.035.

    Article  CAS  PubMed  Google Scholar 

  30. Fu, Qiang, Jing Wang, Zhanqing Ma, and Shiping Ma. 2014. Anti-asthmatic effects of matrine in a mouse model of allergic asthma. Fitoterapia 94. Elsevier B.V.: 183–189. https://doi.org/10.1016/j.fitote.2013.12.014.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, Seung Hyung, Jung Hee Hong, and Young Cheol Lee. 2015. Chelidonine, a principal isoquinolinic alkaloid of Chelidonium majus, attenuates eosinophilic airway inflammation by suppressing IL-4 and eotaxin-2 expression in asthmatic mice. Pharmacological Reports 67. Institute of Pharmacology, Polish Academy of Sciences: 1168–1177. https://doi.org/10.1016/j.pharep.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  32. George, Leena, and Christopher E. Brightling. 2016. Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Therapeutic Advances in Chronic Disease 7. SAGE Publications: 34–51. https://doi.org/10.1177/2040622315609251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kay, A. Barry, Simon Phipps, and Douglas S. Robinson. 2004. A role for eosinophils in airway remodelling in asthma. Trends in Immunology 25: 477–482. https://doi.org/10.1016/j.it.2004.07.006.

    Article  CAS  PubMed  Google Scholar 

  34. Vieira, Giciane C., Francisco A.A.F. Gadelha, Raquel F. Pereira, Laércia K.D.P. Ferreira, José M. Barbosa-filho, Patricia T. Bozza, and Marcia R. Piuvezam. 2018. Warifteine, an alkaloid of Cissampelos sympodialis , modulates allergic profile in a chronic allergic rhinitis model. Revista Brasileira de Farmacognosia 28. Sociedade Brasileira de Farmacognosia: 50–56. https://doi.org/10.1016/j.bjp.2017.10.009.

    Article  CAS  Google Scholar 

  35. Palomares, Óscar, Silvia Sánchez-Ramón, Ignacio Dávila, Luis Prieto, Luis Pérez de Llano, Marta Lleonart, Christian Domingo, and Antonio Nieto. 2017. dIverGent: how IgE axis contributes to the continuum of allergic asthma and anti-IgE therapies. International Journal of Molecular Sciences 18: 1–14. https://doi.org/10.3390/ijms18061328.

    Article  CAS  Google Scholar 

  36. Peters, Marcus, Stefanie Köhler-Bachmann, Tim Lenz-Habijan, and Albrecht Bufe. 2016. Influence of an allergen-specific Th17 response on remodeling of the airways. American Journal of Respiratory Cell and Molecular Biology 54: 350–358. https://doi.org/10.1165/rcmb.2014-0429OC.

    Article  CAS  PubMed  Google Scholar 

  37. Irvin, Chaoyu, Iram Zafar, James Good, Donald Rollins, Christina Christianson, Magdalena M. Gorska, Richard J. Martin, and Rafeul Alam. 2014. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. Journal of Allergy and Clinical Immunology 134: 1175–1186.e7. https://doi.org/10.1016/j.jaci.2014.05.038.

    Article  CAS  PubMed  Google Scholar 

  38. Keynan, Yoav, Catherine M. Card, Paul J. Mclaren, Magdy R. Dawood, Ken Kasper, and Keith R. Fowke. 2008. The role of regulatory T cells in chronic and acute viral infections. Clinical Infectious Diseases 46: 1046–1052. https://doi.org/10.1086/529379.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Brazilian government sponsored this study by CNPq and CAPES organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Regina Piuvezam.

Ethics declarations

The manipulation of the animals was performed according to animal care guide. The Committee on Ethics in Animal Use (CEUA/UFPB) approved the experimental procedures under certificate no. 3105/14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva Ferreira, L.K.D., Paiva Ferreira, L.A.M., Alves, A.F. et al. MHTP, 2-Methoxy-4-(7-methoxy-1,2,3,4-tetrahydroisoquinolin-1-yl) phenol, a Synthetic Alkaloid, Induces IFN-γ Production in Murine Model of Ovalbumin-Induced Pulmonary Allergic Inflammation. Inflammation 41, 2116–2128 (2018). https://doi.org/10.1007/s10753-018-0855-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0855-y

KEY WORDS

Navigation