Skip to main content

Advertisement

Log in

Curcumin Attenuates Airway Inflammation and Airway Remolding by Inhibiting NF-κB Signaling and COX-2 in Cigarette Smoke-Induced COPD Mice

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the therapeutic effects of curcumin on airway inflammation using LPS and cigarette smoke (LC)-induced COPD murine models and LPS-stimulated human bronchial epithelial (BEAS-2B) cells. In this research, COPD murine models were established after challenged with LPS for 2 days and exposed to cigarette smoke for 35 days. Treatment with curcumin for 10 days distinctly alleviated airway inflammation and airway remolding in LC-induced COPD mice according to the lung H&E histopathological examination. The number of neutrophils and lymphocytes in broncho alveolar lavage fluid (BALF) was significantly decreased in curcumin+LC-treated group compared with the LC-induced mice. Additionally, curcumin inhibited BEAS-2B cells proliferation, which suggested the preventive effect of curcumin on progressive airway remolding and inflammatory response mediated by bronchial epithelial cells. Further investigation demonstrated an underlying molecular mechanism for the therapeutic effects of curcumin may rely on the inhibition of the degradation of IκBα and COX-2 expression in curcumin+LC-treated COPD mice and LPS-stimulated BEAS-2B cells. Overall, curcumin alleviates the airway inflammation and airway remolding, which is closely related to inhibit the BEAS-2B cells proliferation and suppress the activation of NF-κB and COX-2 expression. These findings indicate that curcumin may be a potential agent for the therapy of COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

COPD:

Chronic obstructive pulmonary disease

DEX:

Dexamethasone

CUR:

Curcumin

LPS:

Lipopolysaccharide

BALF:

Bronchoalveolar lavage fluid

PBS:

Phosphate-buffered physiological saline

DMSO:

Dimethyl sulfoxide

CS:

Cigarette smoke

LC:

LPS + cigarette smoke

NF-κB:

Nuclear factor-κB

COX-2:

Cyclooxygenase-2

IL-6:

Interleukin 6

TGF-β:

Transforming growth factor-β

BECs:

Bronchial epithelial cells

References

  1. Organization, W.H., WHO. 2013. the top 10 causes of death. Countries.

  2. Yoshida, T., and R.M. Tuder. 2007. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiological Reviews 87 (3): 1047–1082.

    Article  CAS  PubMed  Google Scholar 

  3. Tamimi, A., D. Serdarevic, and N.A. Hanania. 2012. The effects of cigarette smoke on airway inflammation in asthma and COPD: Therapeutic implications. Respiratory Medicine 106 (3): 319–328.

    Article  PubMed  Google Scholar 

  4. Mannino, D.M., and A.S. Buist. 2007. Global burden of COPD: Risk factors, prevalence, and future trends. The Lancet 370 (9589): 765–773.

    Article  Google Scholar 

  5. Rovina, N., A. Koutsoukou, and N.G. Koulouris. 2013. Inflammation and immune response in COPD: Where do we stand? Mediators of Inflammation 2013: 413735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hasday, J.D., R. Bascom, J.J. Costa, T. Fitzgerald, and W. Dubin. 1999. Bacterial endotoxin is an active component of cigarette smoke. Chest 115 (3): 829–835.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Harbi, N.O., et al. 2016. Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-kappaB, COX-2, and pro-inflammatory mediators. Immunological Investigations 45 (4): 349–369.

    Article  CAS  PubMed  Google Scholar 

  8. Di Stefano, A., et al. 2002. Increased expression of nuclear factor- B in bronchial biopsies from smokers and patients with COPD. European Respiratory Journal 20 (3): 556–563.

    Article  CAS  PubMed  Google Scholar 

  9. Morita, I. 2002. Distinct functions of COX-1 and COX-2. Prostaglandins & Other Lipid Mediators 68-69: 165–175.

    Article  CAS  Google Scholar 

  10. Cheng, J., R.T. Dackor, J.A. Bradbury, H. Li, L.M. DeGraff, L.K. Hong, D. King, F.B. Lih, A. Gruzdev, M.L. Edin, G.S. Travlos, G.P. Flake, K.B. Tomer, and D.C. Zeldin. 2016. Contribution of alveolar type II cell-derived cyclooxygenase-2 to basal airway function, lung inflammation, and lung fibrosis. The FASEB Journal 30 (1): 160–173.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y., et al. 2008. Enhanced levels of prostaglandin E2 and matrix metalloproteinase-2 correlate with the severity of airflow limitation in stable COPD. Respirology 13 (7): 1014–1021.

    PubMed  Google Scholar 

  12. Rumzhum, N.N., and A.J. Ammit. 2016. Cyclooxygenase 2: Its regulation, role and impact in airway inflammation. Clinical and Experimental Allergy 46 (3): 397–410.

    Article  CAS  PubMed  Google Scholar 

  13. Brouk, B. 1975. Plants consumed by man. QUARTERLY REVIEW OF BIOLOGY.

  14. Sharma, R.A., A.J. Gescher, and W.P. Steward. 2005. Curcumin: The story so far. European Journal of Cancer 41 (13): 1955–1968.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, I.T., and C.-M. Yang. 2013. Inflammatory signalings involved in airway and pulmonary diseases. Mediators of Inflammation 2013: 1–12.

    Google Scholar 

  16. Fan, Z., et al. 2014. The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-kappaB in a rat model. Oxidative Medicine and Cellular Longevity 2014: 191624.

    PubMed Central  PubMed  Google Scholar 

  17. Ni, H., W. Jin, T. Zhu, J. Wang, B. Yuan, J. Jiang, W. Liang, and Z. Ma. 2015. Curcumin modulates TLR4/NF-kappaB inflammatory signaling pathway following traumatic spinal cord injury in rats. The Journal of Spinal Cord Medicine 38 (2): 199–206.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang, J., et al. 2017. Regulation of type II collagen, matrix metalloproteinase-13 and cell proliferation by interleukin-1β is mediated by curcumin via inhibition of NF-κB signaling in rat chondrocytes. Molecular Medicine Reports.

  19. Sharafkhaneh, A., S. Velamuri, V. Badmaev, C. Lan, and N. Hanania. 2007. The potential role of natural agents in treatment of airway inflammation. Therapeutic Advances in Respiratory Disease 1 (2): 105–120.

    Article  PubMed  Google Scholar 

  20. Chen, J., X. Yang, W. Zhang, D. Peng, Y. Xia, Y. Lu, X. Han, G. Song, J. Zhu, and R. Liu. 2016. Therapeutic effects of resveratrol in a mouse model of LPS and cigarette smoke-induced COPD. Inflammation 39 (6): 1949–1959.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, R., P. Wang, C. Wu, J. Chen, C. Li, Y. Xie, Q. Wang, J. Liu, H. He, and J. Zhu. 2017. Therapeutic effects of Hedyotis diffusa Willd in a COPD mouse model challenged with LPS and smoke. Experimental and Therapeutic Medicine.

  22. Robert, K. 2013. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology—A systematic review. BMC Veterinary Research 9 (1): 123.

    Article  Google Scholar 

  23. Rajendrasozhan, S., J.W. Hwang, H. Yao, N. Kishore, and I. Rahman. 2010. Anti-inflammatory effect of a selective IκB kinase-beta inhibitor in rat lung in response to LPS and cigarette smoke. Pulmonary Pharmacology & Therapeutics 23 (3): 172–181.

    Article  CAS  Google Scholar 

  24. Anto, R.J., A. Mukhopadhyay, S. Shishodia, C.G. Gairola, and B.B. Aggarwal. 2002. Cigarette smoke condensate activates nuclear transcription factor-κB through phosphorylation and degradation of IκBα: Correlation with induction of cyclooxygenase-2. Carcinogenesis 23 (9): 1511–1518.

    Article  CAS  PubMed  Google Scholar 

  25. Poynter, M.E., C.G. Irvin, and Y.M. Janssen-Heininger. 2003. A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. Journal of Immunology 170 (12): 6257–6265.

    Article  CAS  Google Scholar 

  26. Liu, W., H.L. Jiang, L.L. Cai, M. Yan, S.J. Dong, and B. Mao. 2016. Tanreqing injection attenuates lipopolysaccharide-induced airway inflammation through MAPK/NF-kappaB signaling pathways in rats model. Evidence-based Complementary and Alternative Medicine 2016: 5292346.

    PubMed Central  PubMed  Google Scholar 

  27. Hardaker, E.L., M.S. Freeman, N. Dale, P. Bahra, F. Raza, K.H. Banner, and C. Poll. 2010. Exposing rodents to a combination of tobacco smoke and lipopolysaccharide results in an exaggerated inflammatory response in the lung. British Journal of Pharmacology 160 (8): 1985–1996.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Shu, J., D. Li, H. Ouyang, J. Huang, Z. Long, Z. Liang, Y. Chen, Y. Chen, Q. Zheng, M. Kuang, H. Tang, J. Wang, and W. Lu. 2017. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Scientific Reports 7 (1): 15454.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Oh, S.W., J.Y. Cha, J.E. Jung, B.C. Chang, H.J. Kwon, B.R. Lee, and D.Y. Kim. 2011. Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-κB inhibition. Journal of Ethnopharmacology 136 (3): 414–421.

    Article  CAS  PubMed  Google Scholar 

  30. Makinde, T., R.F. Murphy, and D.K. Agrawal. 2007. The regulatory role of TGF-beta in airway remodeling in asthma. Immunology and Cell Biology 85 (5): 348–356.

    Article  CAS  PubMed  Google Scholar 

  31. Stockley, R.A. 2002. Neutrophils and the pathogenesis of COPD. Chest 121 (5): 151S–155S.

    Article  CAS  PubMed  Google Scholar 

  32. Neveu, W.A., et al. 2010. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function. Respiratory Research 11 (1): 1–10.

    Article  CAS  Google Scholar 

  33. Kumari, A., D. Dash, and R. Singh. 2017. Curcumin inhibits lipopolysaccharide (LPS)-induced endotoxemia and airway inflammation through modulation of sequential release of inflammatory mediators (TNF-α and TGF-β1) in murine model. Inflammopharmacology 25 (3): 329–341.

    Article  CAS  PubMed  Google Scholar 

  34. Gao, W., L. Li, Y. Wang, S. Zhang, I.M. Adcock, P.J. Barnes, M. Huang, and X. Yao. 2015. Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 20 (5): 722–729.

    Article  PubMed  Google Scholar 

  35. Hernandez, M.L., B. Harris, J.C. Lay, P.A. Bromberg, D. Diaz-Sanchez, R.B. Devlin, S.R. Kleeberger, N.E. Alexis, and D.B. Peden. 2010. Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge. Inhalation Toxicology 22 (8): 648–656.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhang, J., L. Wu, and J.M. Qu. 2011. Inhibited proliferation of human lung fibroblasts by LPS is through IL-6 and IL-8 release. Cytokine 54 (3): 289–295.

    Article  CAS  PubMed  Google Scholar 

  37. Fan, X.Y., B. Chen, Z.S. Lu, Z.F. Jiang, and S.Q. Zhang. 2016. Poly-l-arginine acts synergistically with LPS to promote the release of IL-6 and IL-8 via p38/ERK signaling pathways in NCI-H292 cells. Inflammation 39 (1): 47–53.

    Article  CAS  PubMed  Google Scholar 

  38. Pettersen, C.A., and K.B. Adler. 2002. Airways inflammation and COPD: Epithelial-neutrophil interactions. Chest 121 (5): 142S–150S.

    Article  CAS  PubMed  Google Scholar 

  39. Randell, S.H. 2006. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society 3 (8): 718–725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Cohen, L., X. E, J. Tarsi, T. Ramkumar, T.K. Horiuchi, R. Cochran, S. DeMartino, K.B. Schechtman, I. Hussain, M.J. Holtzman, M. Castro, and and the NHLBI Severe Asthma Research Program (SARP). 2007. Epithelial cell proliferation contributes to airway remodeling in severe asthma. American Journal of Respiratory and Critical Care Medicine 176 (2): 138–145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews. Immunology 2 (10): 725–734.

    Article  CAS  PubMed  Google Scholar 

  42. Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. Journal of Clinical Investigation 107 (1): 7–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ghosh, S., M.J. May, and E.B. Kopp. 1998. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology 16 (1): 225–260.

    Article  CAS  PubMed  Google Scholar 

  44. Mizgerd, J.P., M.M. Lupa, and M.S. Spieker. 2004. NF-κB p50 facilitates neutrophil accumulation during LPS-induced pulmonary inflammation. BMC Immunology 5 (1): 10.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wang, J.Y., L. Chen, Z. Zheng, Q. Wang, J. Guo, and L. Xu. 2012. Cinobufocini inhibits NF-kappaB and COX-2 activation induced by TNF-alpha in lung adenocarcinoma cells. Oncology Reports 27 (5): 1619–1624.

    CAS  PubMed  Google Scholar 

  46. Willoughby, D.A., A.R. Moore, and P.R. Colville-Nash. 2000. COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. The Lancet 355 (9204): 646–648.

    Article  CAS  Google Scholar 

  47. Soslow, R.A., A.J. Dannenberg, D. Rush, B.M. Woerner, K.N. Khan, J. Masferrer, and A.T. Koki. 2000. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89 (12): 2637–2645.

    Article  CAS  PubMed  Google Scholar 

  48. Yu, M., D. Ives, and C.S. Ramesha. 1997. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. Journal of Biological Chemistry 272 (34): 21181–21186.

    Article  CAS  PubMed  Google Scholar 

  49. Liu, H., A.M. Mamoon, and J.M. Farley Sr. 2005. Prostanoids secreted by alveolar macrophages enhance ionic currents in swine tracheal submucosal gland cells. The Journal of Pharmacology and Experimental Therapeutics 315 (2): 729–739.

    Article  CAS  PubMed  Google Scholar 

  50. Park, G.Y., and J.W. Christman. 2006. Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. American Journal of Physiology. Lung Cellular and Molecular Physiology 290 (5): L797–L805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Profita, M., et al. 2010. Chronic obstructive pulmonary disease and neutrophil infiltration: Role of cigarette smoke and cyclooxygenase products. American Journal of Physiology. Lung Cellular and Molecular Physiology 298 (2): 261–269.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology Program Funds of Jiangxi Province, China (No. 20151BAB205085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renping Liu.

Ethics declarations

The entire experiments were reviewed and proved by the Institutional Animal Experimental Ethics Committee of Nanchang University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Highlight

1. Curcumin effectively attenuates airway inflammation and airway remolding in LC-challenged COPD murine models.

2. Curcumin significantly inhibited the proliferation of BEAS-2B cells, which suggested that curcumin may inhibit airway wall thickness and airway remolding.

3. Curcumin potently suppressed the degradation of IκBα and expression of COX-2 both in vivo and in vitro, which may be the underlying molecular mechanism of the therapeutic effect of curcumin on COPD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Liu, R., Ma, Y. et al. Curcumin Attenuates Airway Inflammation and Airway Remolding by Inhibiting NF-κB Signaling and COX-2 in Cigarette Smoke-Induced COPD Mice. Inflammation 41, 1804–1814 (2018). https://doi.org/10.1007/s10753-018-0823-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0823-6

KEY WORDS

Navigation