Andrographolide Ameliorates Atherosclerosis by Suppressing Pro-Inflammation and ROS Generation-Mediated Foam Cell Formation

ORIGINAL ARTICLE
  • 5 Downloads

Abstract

Inflammation, oxidative stress, and dyslipidemia are major factors in the pathogenesis of atherosclerosis. Andrographolide, a bioactive component of Andrographis paniculata, has several biological activities, including anti-inflammatory, antioxidant, and anticancer effects. This study shows that andrographolide downregulates the oxidized low-density lipoprotein (oxLDL)-induced expression of the pro-inflammatory molecules monocyte chemotactic protein (MCP)-1 and interleukin (IL)-6 and blocks the nuclear factor-κB signaling pathway in macrophages. Additionally, andrographolide treatment decreased reactive oxygen species (ROS) generation in oxLDL-induced macrophages, indicating that the compound can decrease oxidative stress. The results also suggest that andrographolide suppresses oxLDL-induced foam cell formation and inhibits oxLDL-induced CD36 expression in vitro. Furthermore, in vivo studies have indicated that andrographolide treatment ameliorates atherosclerosis pathogenesis in apolipoprotein E knockout mice. Therefore, by suppressing inflammation, ROS generation, and foam cell formation, andrographolide may ameliorate the progression of atherosclerosis, suggesting its potential as a therapeutic drug for the prevention and/or treatment of this disease.

KEY WORDS

andrographolide atherosclerosis inflammation reactive oxygen species foam cell formation 

Notes

Acknowledgments

The authors thank Editage [www.editage.cn] for the English language editing. We also thank Dr. Ying Liu from Guangdong Pharmaceutical University for providing good suggestion to experimental design and supporting parts of this project.   

Funding Information

This work was supported by science and technology development grants from Nanjing Medical University (grant no. 2017NJMU012).;the Science and Technology Planning Project of Guangdong Province (2017A020211007), China; the Key Project of Natural Science Foundation of Guangdong Province (2016A030311014), China and the Natural Science Foundation of Guangdong Province (2015A030313582), China.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have are no conflicts of interest.

References

  1. 1.
    Falk, E., M. Nakano, J.F. Bentzon, A.V. Finn, and R. Virmani. 2013. Update on acute coronary syndromes: the pathologists’ view. European Heart Journal 34: 719–728.CrossRefPubMedGoogle Scholar
  2. 2.
    Ouriel, K. 2001. Peripheral arterial disease. Lancet 358: 1257–1264.CrossRefPubMedGoogle Scholar
  3. 3.
    Collins, R., C. Reith, J. Emberson, J. Armitage, C. Baigent, L. Blackwell, R. Blumenthal, J. Danesh, G.D. Smith, D. DeMets, S. Evans, M. Law, S. MacMahon, S. Martin, B. Neal, N. Poulter, D. Preiss, P. Ridker, I. Roberts, A. Rodgers, P. Sandercock, K. Schulz, P. Sever, J. Simes, L. Smeeth, N. Wald, S. Yusuf, and R. Peto. 2016. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388: 2532–2561.CrossRefPubMedGoogle Scholar
  4. 4.
    Colin, S., G. Chinetti-Gbaguidi, and B. Staels. 2014. Macrophage phenotypes in atherosclerosis. Immunological Reviews 262: 153–166.CrossRefPubMedGoogle Scholar
  5. 5.
    Kwon, G.P., J.L. Schroeder, M.J. Amar, A.T. Remaley, and R.S. Balaban. 2008. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117: 2919–2927.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gistera, A., and G.K. Hansson. 2017. The immunology of atherosclerosis. Nature Reviews. Nephrology 13: 368–380.CrossRefPubMedGoogle Scholar
  7. 7.
    Fraley, A.E., and S. Tsimikas. 2006. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Current Opinion in Lipidology 17: 502–509.CrossRefPubMedGoogle Scholar
  8. 8.
    Siti, H.N., Y. Kamisah, and J. Kamsiah. 2015. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology 71: 40–56.CrossRefPubMedGoogle Scholar
  9. 9.
    Rudijanto, A. 2007. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indonesiana 39: 86–93.PubMedGoogle Scholar
  10. 10.
    Zheng, L., T. Wu, C. Zeng, X. Li, X. Li, D. Wen, T. Ji, T. Lan, L. Xing, J. Li, X. He, and L. Wang. 2016. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice. Atherosclerosis 244: 179–187.CrossRefPubMedGoogle Scholar
  11. 11.
    Pirillo, A., G.D. Norata, and A.L. Catapano. 2013. LOX-1, OxLDL, and atherosclerosis. Mediators of Inflammation 2013: 152786.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang, Y.J., J.T. Wang, Q.X. Fan, and J.G. Geng. 2007. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Research 17: 933–941.CrossRefPubMedGoogle Scholar
  13. 13.
    Ji, X., C. Li, Y. Ou, N. Li, K. Yuan, G. Yang, X. Chen, Z. Yang, B. Liu, W.W. Cheung, L. Wang, R. Huang, and T. Lan. 2016. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-kappaB pathway. Molecular and Cellular Endocrinology 437: 268–279.CrossRefPubMedGoogle Scholar
  14. 14.
    Lan, T., T. Wu, H. Gou, Q. Zhang, J. Li, C. Qi, X. He, P. Wu, and L. Wang. 2013. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. Journal of Cellular Biochemistry 114: 2562–2568.CrossRefPubMedGoogle Scholar
  15. 15.
    Dai, J., Y. Lin, Y. Duan, Z. Li, D. Zhou, W. Chen, L. Wang, and Q.Q. Zhang. 2017. Andrographolide inhibits angiogenesis by inhibiting the Mir-21-5p/TIMP3 signaling pathway. International Journal of Biological Sciences 13: 660–668.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xuan, Y., Y. Gao, H. Huang, X. Wang, Y. Cai, and Q.X. Luan. 2017. Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis. Inflammation 40: 1631–1642.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao, N., R. Wang, L. Zhou, Y. Zhu, J. Gong, and S.M. Zhuang. 2014. MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Molecular Cancer 13: 35.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ackers, I., C. Szymanski, K.J. Duckett, L.A. Consitt, M.J. Silver, and R. Malgor. 2018. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovascular Pathology 34: 1–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Al, B.R., F. Al-Bayaty, M.M. Al-Obaidi, S.F. Hussain, and T.Z. Mulok. 2014. Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis. BioMed Research International 2014: 724718.Google Scholar
  20. 20.
    Gupta, S., K.P. Mishra, S.B. Singh, and L. Ganju. 2018. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis. Inflammopharmacology 26: 447–456.CrossRefPubMedGoogle Scholar
  21. 21.
    Rose-John, S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International Journal of Biological Sciences 8: 1237–1247.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jones, S.A., and S. Rose-John. 2002. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochimica et Biophysica Acta 1592: 251–263.CrossRefPubMedGoogle Scholar
  23. 23.
    Li, Y., S. He, J. Tang, N. Ding, X. Chu, L. Cheng, X. Ding, T. Liang, S. Feng, S.U. Rahman, et al. 2017. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-kappaB/MAPK signaling pathway. Evidence-based Complementary and Alternative Medicine 2017: 8248142.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8: e56407.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Touyz, R.M., and A.M. Briones. 2011. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertension Research 34: 5–14.CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng, Y.C., J.M. Sheen, W.L. Hu, and Y.C. Hung. 2017. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Medicine and Cellular Longevity 2017: 8526438.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    McLaren, J.E., D.R. Michael, T.G. Ashlin, and D.P. Ramji. 2011. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Progress in Lipid Research 50: 331–347.CrossRefPubMedGoogle Scholar
  28. 28.
    Moore, K.J., F.J. Sheedy, and E.A. Fisher. 2013. Macrophages in atherosclerosis: a dynamic balance. Nature Reviews. Immunology 13: 709–721.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kunjathoor, V.V., M. Febbraio, E.A. Podrez, K.J. Moore, L. Andersson, S. Koehn, J.S. Rhee, R. Silverstein, H.F. Hoff, and M.W. Freeman. 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. The Journal of Biological Chemistry 277: 49982–49988.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin, H., C. Lii, H. Chen, A. Lin, Y. Yang, and H. Chen. 2018. Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages. The American Journal of Chinese Medicine 46: 87–106.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Biomedical Engineering, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  2. 2.Key Laboratory of Cardiovascular Disease and Department of PathophysiologyNanjing Medical UniversityNanjingChina
  3. 3.Department of Rehabilitation Medicine, Guangzhou First People’s HospitalSecond Affiliated Hospital of South China University of TechnologyGuangzhouChina
  4. 4.School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
  5. 5.Organ Transplantation CenterThe First Affiliated Hospital, Sun Yat-sen UniversityGuangzhouChina
  6. 6.Department of Pharmacology, School of PharmacyGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouChina

Personalised recommendations