Skip to main content
Log in

Neutrophils as a Potential Source of Chitinase-3-like Protein 1 in Cystic Fibrosis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The chitinase-3-like protein 1, also known as YKL-40, is an inflammatory marker increased in blood of patients with cystic fibrosis (CF). Systemic levels of YKL-40 are increased in dysglycemic patients with CF. Our objective is to determine if YKL-40 is expressed and released by CF neutrophils. We also assessed if specific stimulus, such as glucose and lipopolysaccharide (LPS), can induce the secretion of YKL-40. Neutrophil cells of healthy adults and patients with CF were isolated. Immunostaining of whole blood and neutrophils was done. CF and healthy neutrophils were cultured with either LPS or varying concentrations of glucose. YKL-40 protein was measured using specific immunoassay ELISA. Isolated neutrophil cells from 11 patients with CF (32.3 ± 8.0 years) were compared to five age-matched healthy individuals (28.3 ± 5.5 years). Although there is a significant increase in the concentration of YKL-40 in CF neutrophils compared to healthy neutrophils (P = 0.027), the spontaneous release of YKL-40 into the media is similar in CF and healthy neutrophils. CF neutrophils stimulated with LPS or glucose do not stimulate the release of YKL-40 (P = 0.995 for glucose and P = 0.624 for LPS). CF neutrophils have higher intracellular level of YKL-40 than neutrophils from healthy volunteers, but they do not release more YKL-40 when stimulated with exogenous stimulus. These results suggest that the increased levels of circulating YKL-40 in CF patients might originate from another cellular source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson, P. 2010. Emerging therapies in cystic fibrosis. Therapeutic Advances in Respiratory Disease 4 (3): 177–185. https://doi.org/10.1177/1753465810371107.

    Article  PubMed  CAS  Google Scholar 

  2. Cantin, A.M., D. Hartl, M.W. Konstan, and J.F. Chmiel. 2015. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. Journal of Cystic Fibrosis : Official Journal of the European Cystic Fibrosis Society 14 (4): 419–430. https://doi.org/10.1016/j.jcf.2015.03.003.

    Article  CAS  Google Scholar 

  3. Bruscia, E.M., and T.L. Bonfield. 2016. Innate and Adaptive Immunity in Cystic Fibrosis. Clinics in Chest Medicine 37 (1): 17–29. https://doi.org/10.1016/j.ccm.2015.11.010.

    Article  PubMed  Google Scholar 

  4. Sagel, S.D., J.F. Chmiel, and M.W. Konstan. 2007. Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proceedings of the American Thoracic Society 4 (4): 406–417. https://doi.org/10.1513/pats.200703-044BR.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bouvet, G.F., M. Maignan, E. Arslanian, A. Coriati, R. Rabasa-Lhoret, and Y. Berthiaume. 2015. Association between serum YKL-40 level and dysglycemia in cystic fibrosis. Cytokine 71 (2): 296–301. https://doi.org/10.1016/j.cyto.2014.10.017.

    Article  PubMed  CAS  Google Scholar 

  6. Kawada, M., Y. Hachiya, A. Arihiro, and E. Mizoguchi. 2007. Role of mammalian chitinases in inflammatory conditions. The Keio Journal of Medicine 56 (1): 21–27.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, C.G., C.A. Da Silva, C.S. Dela Cruz, F. Ahangari, B. Ma, M.J. Kang, C.H. He, S. Takyar, and J.A. Elias. 2011. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual Review of Physiology 73: 479–501. https://doi.org/10.1146/annurev-physiol-012110-142250.

    Article  PubMed  CAS  Google Scholar 

  8. Ober, C., Z. Tan, Y. Sun, J.D. Possick, L. Pan, R. Nicolae, S. Radford, R.R. Parry, A. Heinzmann, K.A. Deichmann, L.A. Lester, J.E. Gern, R.F. Lemanske Jr., D.L. Nicolae, J.A. Elias, and G.L. Chupp. 2008. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. The New England Journal of Medicine 358 (16): 1682–1691. https://doi.org/10.1056/NEJMoa0708801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sakazaki, Y., T. Hoshino, S. Takei, M. Sawada, H. Oda, S. Takenaka, H. Imaoka, K. Matsunaga, T. Ota, Y. Abe, I. Miki, K. Fujimoto, T. Kawayama, S. Kato, and H. Aizawa. 2011. Overexpression of chitinase 3-like 1/YKL-40 in lung-specific IL-18-transgenic mice, smokers and COPD. PLoS One 6 (9): e24177. https://doi.org/10.1371/journal.pone.0024177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rathcke, C.N., and H. Vestergaard. 2009. YKL-40—an emerging biomarker in cardiovascular disease and diabetes. Cardiovascular Diabetology 8: 61. https://doi.org/10.1186/1475-2840-8-61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Johansen, J.S., S.E. Bojesen, A. Tybjaerg-Hansen, A.K. Mylin, P.A. Price, and B.G. Nordestgaard. 2010. Plasma YKL-40 and total and disease-specific mortality in the general population. Clinical Chemistry 56 (10): 1580–1591. https://doi.org/10.1373/clinchem.2010.146530.

    Article  PubMed  CAS  Google Scholar 

  12. Johansen, J.S., A.N. Pedersen, M. Schroll, T. Jorgensen, B.K. Pedersen, and H. Bruunsgaard. 2008. High serum YKL-40 level in a cohort of octogenarians is associated with increased risk of all-cause mortality. Clinical and Experimental Immunology 151 (2): 260–266. https://doi.org/10.1111/j.1365-2249.2007.03561.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rathcke, C.N., I. Raymond, C. Kistorp, P. Hildebrandt, J. Faber, and H. Vestergaard. 2010. Low grade inflammation as measured by levels of YKL-40: association with an increased overall and cardiovascular mortality rate in an elderly population. International Journal of Cardiology 143 (1): 35–42. https://doi.org/10.1016/j.ijcard.2009.01.043.

    Article  PubMed  Google Scholar 

  14. Hector, A., M.S. Kormann, I. Mack, P. Latzin, C. Casaulta, E. Kieninger, Z. Zhou, A.O. Yildirim, A. Bohla, N. Rieber, M. Kappler, B. Koller, E. Eber, O. Eickmeier, S. Zielen, O. Eickelberg, M. Griese, M.A. Mall, and D. Hartl. 2011. The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease. PLoS One 6 (9): e24399. https://doi.org/10.1371/journal.pone.0024399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aris, R.M., A.R. Stephens, D.A. Ontjes, A. Denene Blackwood, R.K. Lark, M.B. Hensler, I.P. Neuringer, and G.E. Lester. 2000. Adverse alterations in bone metabolism are associated with lung infection in adults with cystic fibrosis. American Journal of Respiratory and Critical Care Medicine 162 (5): 1674–1678. https://doi.org/10.1164/ajrccm.162.5.2002100.

    Article  PubMed  CAS  Google Scholar 

  16. del Campo, R., E. Martinez, C. del Fresno, R. Alenda, V. Gomez-Pina, I. Fernandez-Ruiz, M. Siliceo, T. Jurado, V. Toledano, F. Arnalich, F. Garcia-Rio, and E. Lopez-Collazo. 2011. Translocated LPS might cause endotoxin tolerance in circulating monocytes of cystic fibrosis patients. PLoS One 6 (12): e29577. https://doi.org/10.1371/journal.pone.0029577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rathcke, C.N., J.S. Johansen, and H. Vestergaard. 2006. YKL-40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance. Inflammation Research 55 (2): 53–59. https://doi.org/10.1007/s00011-005-0010-8.

    Article  PubMed  CAS  Google Scholar 

  18. Stecenko, A.A., and A. Moran. 2010. Update on cystic fibrosis-related diabetes. Current Opinion in Pulmonary Medicine 16 (6): 611–615. https://doi.org/10.1097/MCP.0b013e32833e8700.

    Article  PubMed  Google Scholar 

  19. Volck, B., P.A. Price, J.S. Johansen, O. Sorensen, T.L. Benfield, H.J. Nielsen, J. Calafat, and N. Borregaard. 1998. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proceedings of the Association of American Physicians 110 (4): 351–360.

    PubMed  CAS  Google Scholar 

  20. Joshi, M.B., A. Lad, A.S. Bharath Prasad, A. Balakrishnan, L. Ramachandra, and K. Satyamoorthy. 2013. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Letters 587 (14): 2241–2246. https://doi.org/10.1016/j.febslet.2013.05.053.

    Article  PubMed  CAS  Google Scholar 

  21. Thom, S.R., V.M. Bhopale, K. Yu, W. Huang, M.A. Kane, and D.J. Margolis. 2017. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. The Journal of Biological Chemistry 292 (44): 18312–18324. https://doi.org/10.1074/jbc.M117.802629.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Otsuka, K., H. Matsumoto, A. Niimi, S. Muro, I. Ito, T. Takeda, K. Terada, M. Yamaguchi, H. Matsuoka, M. Jinnai, T. Oguma, H. Nakaji, H. Inoue, T. Tajiri, T. Iwata, K. Chin, and M. Mishima. 2012. Sputum YKL-40 levels and pathophysiology of asthma and chronic obstructive pulmonary disease. Respiration; International Review of Thoracic Diseases 83 (6): 507–519. https://doi.org/10.1159/000330840.

    Article  PubMed  CAS  Google Scholar 

  23. Gray, R.D., G. Hardisty, K.H. Regan, M. Smith, C.T. Robb, R. Duffin, A. Mackellar, J.M. Felton, L. Paemka, B.N. McCullagh, C.D. Lucas, D.A. Dorward, E.F. McKone, G. Cooke, S.C. Donnelly, P.K. Singh, D.A. Stoltz, C. Haslett, P.B. McCray, M.K.B. Whyte, A.G. Rossi, and D.J. Davidson. 2018. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax 73 (2): 134–144. https://doi.org/10.1136/thoraxjnl-2017-210134.

    Article  PubMed  Google Scholar 

  24. Hayes, E., K. Pohl, N.G. McElvaney, and E.P. Reeves. 2011. The cystic fibrosis neutrophil: a specialized yet potentially defective cell. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 59 (2): 97–112. https://doi.org/10.1007/s00005-011-0113-6.

    Article  Google Scholar 

  25. Downey, D.G., S.L. Martin, M. Dempster, J.E. Moore, M.T. Keogan, B. Starcher, J. Edgar, D. Bilton, and J.S. Elborn. 2007. The relationship of clinical and inflammatory markers to outcome in stable patients with cystic fibrosis. Pediatric Pulmonology 42 (3): 216–220. https://doi.org/10.1002/ppul.20553.

    Article  PubMed  Google Scholar 

  26. Hogardt, M., and J. Heesemann. 2013. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Current Topics in Microbiology and Immunology 358: 91–118. https://doi.org/10.1007/82_2011_199.

    Article  PubMed  CAS  Google Scholar 

  27. Johansen, J.S., K.S. Krabbe, K. Moller, and B.K. Pedersen. 2005. Circulating YKL-40 levels during human endotoxaemia. Clinical and Experimental Immunology 140 (2): 343–348. https://doi.org/10.1111/j.1365-2249.2005.02763.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zurawska-Plaksej, E., A. Lugowska, K. Hetmanczyk, M. Knapik-Kordecka, and A. Piwowar. 2015. Neutrophils as a Source of Chitinases and Chitinase-Like Proteins in Type 2 Diabetes. PLoS One 10 (10): e0141730. https://doi.org/10.1371/journal.pone.0141730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Celik, C., R. Abali, S. Guzel, E. Bastu, V. Kucukyalcin, and M. Yilmaz. 2012. Elevated circulating levels of YKL-40 are a marker of abnormal glucose tolerance in women with polycystic ovary syndrome. Clinical Endocrinology 77 (6): 893–897. https://doi.org/10.1111/j.1365-2265.2012.04437.x.

    Article  PubMed  CAS  Google Scholar 

  30. Kemp, T., A. Schram-Doumont, R. van Geffel, R. Kram, and C. Szpirer. 1986. Alteration of the N-formyl-methionyl-leucyl-phenylalanine-induced response in cystic fibrosis neutrophils. Pediatric Research 20 (6): 520–526. https://doi.org/10.1203/00006450-198606000-00008.

    Article  PubMed  CAS  Google Scholar 

  31. Brennan, A.L., K.M. Gyi, D.M. Wood, J. Johnson, R. Holliman, D.L. Baines, B.J. Philips, D.M. Geddes, M.E. Hodson, and E.H. Baker. 2007. Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosis. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society 6 (2): 101–109. https://doi.org/10.1016/j.jcf.2006.03.009.

    Article  CAS  Google Scholar 

  32. Mallia, P., J. Webber, S.K. Gill, M.B. Trujillo-Torralbo, M.A. Calderazzo, L. Finney, E. Bakhsoliani, H. Farne, A. Singanayagam, J. Footitt, R. Hewitt, T. Kebadze, J. Aniscenko, V. Padmanaban, P.L. Molyneaux, I.M. Adcock, P.J. Barnes, K. Ito, S.L. Elkin, O.M. Kon, W.O. Cookson, M.F. Moffat, S.L. Johnston, and J.S. Tregoning. 2017. Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease. The Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2017.10.017.

  33. Nielsen, A.R., C. Erikstrup, J.S. Johansen, C.P. Fischer, P. Plomgaard, R. Krogh-Madsen, S. Taudorf, B. Lindegaard, and B.K. Pedersen. 2008. Plasma YKL-40: a BMI-independent marker of type 2 diabetes. Diabetes 57 (11): 3078–3082. https://doi.org/10.2337/db08-0182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ringsholt, M., E.V. Hogdall, J.S. Johansen, P.A. Price, and L.H. Christensen. 2007. YKL-40 protein expression in normal adult human tissues—an immunohistochemical study. Journal of Molecular Histology 38 (1): 33–43. https://doi.org/10.1007/s10735-006-9075-0.

    Article  PubMed  CAS  Google Scholar 

  35. Regamey, N., P.K. Jeffery, E.W. Alton, A. Bush, and J.C. Davies. 2011. Airway remodelling and its relationship to inflammation in cystic fibrosis. Thorax 66 (7): 624–629. https://doi.org/10.1136/thx.2009.134106.

    Article  PubMed  Google Scholar 

  36. Colombo, C. 2007. Liver disease in cystic fibrosis. Current Opinion in Pulmonary Medicine 13 (6): 529–536. https://doi.org/10.1097/MCP.0b013e3282f10a16.

    Article  PubMed  Google Scholar 

  37. Meyerholz, D.K., D.A. Stoltz, A.A. Pezzulo, and M.J. Welsh. 2010. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. The American Journal of Pathology 176 (3): 1377–1389. https://doi.org/10.2353/ajpath.2010.090849.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the CF patients as well as the nurses at the CF clinic who participated in this study.

Funding

Funding from the Lamarre-Gosselin Chair supported YB and a Cystic Fibrosis Canada Postdoctoral Fellowship supported AC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Berthiaume.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coriati, A., Massé, C., Ménard, A. et al. Neutrophils as a Potential Source of Chitinase-3-like Protein 1 in Cystic Fibrosis. Inflammation 41, 1631–1639 (2018). https://doi.org/10.1007/s10753-018-0806-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0806-7

KEY WORDS

Navigation