Advertisement

Inflammation

, Volume 41, Issue 4, pp 1304–1320 | Cite as

CpG-ODNs and Budesonide Act Synergistically to Improve Allergic Responses in Combined Allergic Rhinitis and Asthma Syndrome Induced by Chronic Exposure to Ovalbumin by Modulating the TSLP-DC-OX40L Axis

  • Hong-tao Li
  • Zhuang-gui Chen
  • Yu-sen Lin
  • Hui Liu
  • Jin Ye
  • Xiao-ling Zou
  • Yan-hong Wang
  • Hai-ling Yang
  • Tian-tuo Zhang
ORIGINAL ARTICLE

Abstract

The experimental model of combined allergic rhinitis and asthma syndrome (CARAS) has shown that CpG oligodeoxynucleotides (CpG-ODNs) are potential inhibitors of type 2 helper cell-driven inflammatory responses. Currently available CpG-ODNs modestly inhibit allergic responses in CARAS, while a combination strategy for upper airway treatment by co-administration of CpG-ODNs and glucocorticoids may show good efficacy. This study aimed to assess the therapeutic effects of CpG-ODNs combined with budesonide (BUD) on upper and lower-airway inflammation and remodeling in mice with CARAS induced by chronic exposure to ovalbumin (OVA), exploring the possible underlying molecular mechanisms. A BALB/c mouse model of chronic CARAS was established by systemic sensitization and repeated challenge with OVA. Treatment with CpG-ODNs or BUD by intranasal administration was started 1 h after OVA challenge. Then, nasal mucosa and lung tissues were fixed and stained for pathologic analysis. The resulting immunologic variables and TSLP-DC-OX40L axis parameters were evaluated. Both CpG-ODNs and BUD intranasal administration are effective on reducing Th2-type airway inflammation and tissue remodeling. Co-administration of CpG-ODNs and BUD was more effective than each monotherapy in attenuating upper and lower-airway inflammation as well as airway remodeling in chronic CARAS. Notably, combination of CpG-ODNs with BUD modulated the TSLP-DC-OX40L axis, as demonstrated by decreased TSLP production in the nose and lung, alongside decreased TSLPR and OX40L in DC. Intranasal co-administration of CpG-ODNs and BUD synergistically alleviates airway inflammation and tissue remodeling in experimental chronic CARAS, through shared cellular pathways, as a potent antagonist of the TSLP-DC-OX40L axis.

KEY WORDS

Bronchial asthma Allergic rhinitis CpG oligodeoxynucleotides Dendritic cells Thymic stromal lymphopoietin 

Notes

Acknowledgements

We gratefully thank Qing Liu for helping us to establish the animal model. We also thank Rong Yao for administrative assistance. This manuscript was edited for English language by MedSci.

Funding

This study was supported by the National Natural Science Foundation of China (grant number 81470220, 81470219), Science and Technology Planning Project of Guangdong Province, China (grant number 2016A020215220), Science and Technology Program of Guangzhou, China (grant number 201707010076), and Natural Science Foundation of Guangdong Province, China (grant number S2013010015990). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with Ethical Standards

All the animal experiments conformed to the principles for the care and use of animals in biomedical research. The study protocol was approved by the ethics committee of animal experiments of the Vaccine Research Institute of Sun Yat-Sen University vivarium ([2014]2-11).

Competing Interest

The authors declare that they have no competing interests.

Supplementary material

10753_2018_779_MOESM1_ESM.doc (14.4 mb)
Supplementary Fig. 1 CpG-ODNs and BUD synergistically alleviate nose and lung inflammation as well as other nasal symptoms. OVA-sensitized and challenged mice received intranasal treatment with CpG-ODNs and BUD 1 h after each OVA challenge, and histological examination of the nose and lung was performed 48 h after final OVA exposure. (A) Eosinophils in the BALF were counted under a light microscope. (B) Lung inflammation scores were obtained as described in the main text. Sneezing (C) and nasal rubbing (D) events after the last nasal challenge were counted. Representative photomicrographs of lung sections stained with H&E for cell infiltrate assessment (E). Original magnification, ×200. Representative micrographs for pathological and morphological changes in nasal tissues, as obtained by H&E (F) and PAS (G) staining. Original magnification, ×400; scale bars, 50 μm. (DOC 14710 kb)

References

  1. 1.
    Licari, A., R. Castagnoli, C.F. Denicolò, L. Rossini, A. Marseglia, and G.L. Marseglia. 2017. The nose and the lung: United airway disease? Frontiers in Pediatrics 5: 44.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang, X., C. Liu, L. Wu, and S. Zhu. 2016. Potent ameliorating effect of Hypoxia-inducible factor 1α (HIF-1α) antagonist YC-1 on combined allergic rhinitis and asthma syndrome (CARAS) in Rats. European Journal of Pharmacology 788: 343–350.CrossRefPubMedGoogle Scholar
  3. 3.
    Passali, G.C., L.M. Bellussi, E. De Corso, F.M. Passali, and D. Passali. 2013. The natural course of allergic rhinitis: a 32-year follow-up study. Acta Oto-Laryngologica 133 (11): 1188–1195.CrossRefPubMedGoogle Scholar
  4. 4.
    Stelmach, R., and A. Cukier. 2006. Treating allergic rhinitis and asthma: different sides of the same fence. Expert Opinion on Pharmacotherapy 7: 1245–1249.CrossRefPubMedGoogle Scholar
  5. 5.
    Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2016. Available from: http://www.ginasthma.org.
  6. 6.
    Brambilla, I., A. Pusateri, F. Pagella, D. Caimmi, S. Caimmi, A. Licari, S. Barberi, A.M. Castellazzi, and G.L. Marseglia. 2014. Adenoids in children: advances in immunology, diagnosis, and surgery. Clinical Anatomy 27: 346–352.CrossRefPubMedGoogle Scholar
  7. 7.
    Corren, J., B.E. Manning, S.F. Thompson, S. Hennessy, and B.L. Strom. 2004. Rhinitis therapy and the prevention of hospital care for asthma: a case-control study. The Journal of Allergy and Clinical Immunology 113 (3): 415–419.CrossRefPubMedGoogle Scholar
  8. 8.
    Chung, K.F., S.E. Wenzel, J.L. Brozek, A. Bush, M. Castro, P.J. Sterk, I.M. Adcock, E.D. Bateman, E.H. Bel, E.R. Bleecker, L.P. Boulet, C. Brightling, P. Chanez, S.E. Dahlen, R. Djukanovic, U. Frey, M. Gaga, P. Gibson, Q. Hamid, N.N. Jajour, T. Mauad, R.L. Sorkness, and W.G. Teague. 2014. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. The European Respiratory Journal 43 (2): 343–373.CrossRefPubMedGoogle Scholar
  9. 9.
    Alves Rde, S., A. Vianna Fde, and C.A. Pereira. 2008. Clinical phenotypes of severe asthma. Jornal Brasileiro de Pneumologia 34 (9): 646–653.CrossRefPubMedGoogle Scholar
  10. 10.
    de Carvalho-Pinto, R.M., A. Cukier, L. Angelini, L. Antonangelo, T. Mauad, M. Dolhnikoff, K.F. Rabe, and R. Stelmach. 2012. Clinical characteristics and possible phenotypes of an adult severe asthma population. Respiratory Medicine 106 (1): 47–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao, S., Y. Jiang, X. Yang, D. Guo, Y. Wang, J. Wang, R. Wang, and C. Wang. 2017. Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. The Journal of Asthma 54 (5): 447–455.CrossRefPubMedGoogle Scholar
  12. 12.
    RS, Irwin, and N.D. Richardson. 2006. Side effects with inhaled corticosteroids: the physician’s perception. Chest 130 (S1): 41S–53S.Google Scholar
  13. 13.
    Zöllner, E.W., C. Lombard, U. Galal, S. Hough, E. Irusen, and E. Weinberg. 2011. Hypothalamicpituitary-adrenal axis suppression in asthmatic children on inhaled and nasal corticosteroids-more common than expected? Journal of Pediatric Endocrinology & Metabolism 24 (7–8): 529–534.Google Scholar
  14. 14.
    Allen, D.B., L. Bielory, H. Derendorf, R. Dluhy, G.L. Colice, and S.J. Szefler. 2003. Inhaled corticosteroids: past lessons and future issues. The Journal of Allergy and Clinical Immunology 112 (Suppl. 3): S1–S40.CrossRefPubMedGoogle Scholar
  15. 15.
    Nguyen, T.H., and T.B. Casale. 2011. Immune modulation for treatment of allergic disease. Immunological Reviews 242 (1): 258–271.CrossRefPubMedGoogle Scholar
  16. 16.
    Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124 (4): 783–801.CrossRefPubMedGoogle Scholar
  17. 17.
    Temizoz, B., E. Kuroda, K. Ohata, N. Jounai, K. Ozasa, K. Kobiyama, T. Aoshi, and K.J. Ishii. 2015. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. European Journal of Immunology 45 (4): 1159–1169.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Marshall, J.D., K. Fearon, C. Abbate, S. Subramanian, P. Yee, J. Gregorio, R.L. Coffman, and G. Van Nest. 2003. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. Journal of Leukocyte Biology 73: 781–792.CrossRefPubMedGoogle Scholar
  19. 19.
    Li, H.T., T.T. Zhang, Z.G. Chen, J. Ye, H. Liu, X.L. Zou, Y.H. Wang, and H.L. Yang. 2015. Intranasal administration of CpG oligodeoxynucleotides reduces lower airway inflammation in a murine model of combined allergic rhinitis and asthma syndrome. International Immunopharmacology 28 (1): 390–398.CrossRefPubMedGoogle Scholar
  20. 20.
    Li, H.T., Z.G. Chen, H. Liu, J. Ye, X.L. Zou, Y.H. Wang, H.L. Yang, P. Meng, and T.T. Zhang. 2016. Treatment of allergic rhinitis with CpG oligodeoxynucleotides alleviates the lower airway outcomes of combined allergic rhinitis and asthma syndrome via a mechanism that possibly involves in TSLP. Experimental Lung Research 42 (6): 322–333.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen, Z.G., T.T. Zhang, H.T. Li, F.H. Chen, X.L. Zou, J.Z. Ji, and H. Chen. 2013. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite. PLoS One 8: e51268.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen, Z.G., P. Meng, H.T. Li, M. Li, L.F. Yang, Y. Yan, Y.T. Li, X.L. Zou, D.Y. Wang, and T.T. Zhang. 2017. Thymic stromal lymphopoietin contribution to the recruitment of circulating fibrocytes to the lung in a mouse model of chronic allergic asthma. The Journal of Asthma 3: 1–9.  https://doi.org/10.1080/02770903.2017.1386213.CrossRefGoogle Scholar
  23. 23.
    Murakami-Satsutani, N., T. Ito, T. Nakanishi, N. Inagaki, A. Tanaka, P.T.X. Vien, K. Kibata, M. Inaba, and S. Nomura. 2014. IL-33 promotes the induction and maintenance of Th2 immune responses by enhancing the function of OX40 ligand. Allergology International 63 (3): 443–455.CrossRefGoogle Scholar
  24. 24.
    Fei, X., X. Zhang, G.Q. Zhang, W.P. Bao, Y.Y. Zhang, M. Zhang, and X. Zhou. 2017. Cordycepin inhibits airway remodeling in a rat model of chronic asthma. Biomedicine & Pharmacotherapy 88: 335–341.CrossRefGoogle Scholar
  25. 25.
    El-Sherbeeny, N.A., Z.A. Hassan, and H. Ateyya. 2016. Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodelling. International Immunopharmacology 39: 172–180.CrossRefPubMedGoogle Scholar
  26. 26.
    Alrifai, M., L.M. Marsh, T. Dicke, A. Kılıç, M.L. Conrad, H. Renz, and H. Garn. 2014. Compartmental and temporal dynamics of chronic inflammation and airway remodeling in a chronic asthma mouse model. PLoS One 9 (1): e85839.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li, C., Y. Fu, Y. Wang, Y. Kong, M. Li, D. Ma, W. Zhai, H. Wang, Y. Lin, S. Liu, F. Ren, J. Li, and Y. Wang. 2017. Mesenchymal stromal cells ameliorate acute allergic rhinitis in rats. Cell Biochemistry and Function 35 (7): 420–425.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Suzuki, M., T. Matsumoto, N. Ohta, W.P. Min, and S. Murakami. 2007. Intranasal CpG DNA therapy during allergen exposure in allergic rhinitis. Otolaryngology and Head and Neck Surgery 136 (2): 246–251.CrossRefGoogle Scholar
  29. 29.
    Xiao, L., L. Jiang, Q. Hu, and Y. Li. 2017. MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3. Cellular Physiology and Biochemistry 42 (3): 901–912.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu, S., C. Zhao, N. Che, L. Jing, and R. Ge. 2017. Hydrogen-rich saline attenuates eosinophil activation in a guinea pig model of allergic rhinitis via reducing oxidative stress. Journal of Inflammation (Lond) 14 (1): 1.CrossRefGoogle Scholar
  31. 31.
    Li, J., X. Zou, C. Li, J. Zhong, Y. Chen, X. Zhang, F. Qi, M. Li, Z. Cai, and A. Tang. 2017. Expression of novel cancer/testis antigen TMEM31 increases during metastatic melanoma progression. Oncology Letters 13 (4): 2269–2273.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jia, X.L., S.Y. Li, S.S. Dang, Y.A. Cheng, X. Zhang, W.J. Wang, C.E. Hughes, and B. Caterson. 2012. Increased expression of chondroit in sulphate proteoglycans in rat hepatocellular carcinoma tissues. World Journal of Gastroenterology 18 (30): 3962–3976.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li, Y., W. Wang, X. Jia, S. Zhai, X. Wang, Y. Wang, and S.A. Dang. 2015. Targeted Multiple Antigenic Peptide Vaccine Augments the Immune Response to Self TGF-β1 and Suppresses Ongoing Hepatic Fibrosis. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 63 (4): 305–315.CrossRefGoogle Scholar
  34. 34.
    Shieh, Y.H., H.M. Huang, C.C. Wang, C.C. Lee, C.K. Fan, and Y.L. Lee. 2015. Zerumbone enhances the Th1 response and ameliorates ovalbumin-induced Th2 responses and airway inflammation in mice. International Immunopharmacology 24 (2): 383–391.CrossRefPubMedGoogle Scholar
  35. 35.
    Agrawal, K., S.L. Kale, and N. Arora. 2015. Protease activity of Per a 10 potentiates Th2 polarization by increasing IL-23 and OX40L. European Journal of Immunology 45 (12): 3375–3385.CrossRefPubMedGoogle Scholar
  36. 36.
    Shi, L., S.W. Leu, F. Xu, X. Zhou, H. Yin, L. Cai, and L. Zhang. 2008. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clinical Immunology 129 (2): 202–210.CrossRefPubMedGoogle Scholar
  37. 37.
    Leigh, R., R. Ellis, J.N. Wattie, J.A. Hirota, K.I. Matthaei, P.S. Foster, P.M. O'Byrne, and M.D. Inman. 2004. Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. American Journal of Respiratory and Critical Care Medicine 169 (7): 860–867.CrossRefPubMedGoogle Scholar
  38. 38.
    Darby, I.A., B. Laverdet, F. Bonté, and A. Desmoulière. 2014. Fibroblasts and myofibroblasts in wound healing. Clinical, Cosmetic and Investigational Dermatology 7: 301–311.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu, Y.J. 2006. Thymic stromal lymphopoietin: master switch for allergic inflammation. The Journal of Experimental Medicine 203 (2): 269–273.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lambrecht, B.N., and H. Hammad. 2003. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nature Reviews. Immunology 3 (12): 994–1003.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang, Y., Y. Liang, Y. Zhang, D. Wu, and H. Liu. 2015. Bortezomib inhibits bone marrow-derived dendritic cells. International Journal of Clinical and Experimental Pathology 8 (5): 4857–4862.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang, W.L., H.Y. Li, M.S. Zhang, P.S. Gao, S.H. He, T. Zheng, Z. Zhu, and L.F. Zhou. 2013. Thymic Stromal Lymphopoietin: A Promising Therapeutic Target for Allergic Diseases. International Archives of Allergy and Immunology 160 (1): 18–26.CrossRefPubMedGoogle Scholar
  43. 43.
    Kopecka, J., D. Rozkova, and A. Sediva. 2013. Plasmacytoid DCs, exposed to TSLP in synergy with TLR ligands, acquire significant potential towards Th2 polarization. Medical Science Monitor Basic Research 19: 291–299.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Akbari, O., and D.T. Umetsu. 2005. Role of regulatory dendritic cells in allergy and asthma. Current Allergy and Asthma Reports 5: 56–61.CrossRefPubMedGoogle Scholar
  45. 45.
    Giavina-Bianchi, P., M.V. Aun, P. Takejima, J. Kalil, and R.C. Agondi. 2016. United airway disease: current perspectives. Journal of Asthma and Allergy 9: 93–100.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wert, A.F., D. Posa, O. Tsilochristou, and N. Schwerk. 2016. Treatment of allergic children-where is the progress (for the practicing allergist)? Pediatric Allergy and Immunology 27: 671–681.CrossRefPubMedGoogle Scholar
  47. 47.
    Xanthou, G., T. Alissafi, M. Semitekolou, D.C. Simoes, E. Economidou, M. Gaga, B.N. Lambrecht, C.M. Lloyd, and V. Panoutsakopoulou. 2007. Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nature Medicine 13 (5): 570–578.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Idzko, M., H. Hammad, M. van Nimwegen, M. Kool, M.A. Willart, F. Muskens, H.C. Hoogsteden, W. Luttmann, D. Ferrari, F. Di Virgilio, J.C. Virchow Jr., and B.N. Lambrecht. 2007. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Medicine 13 (8): 913–919.CrossRefPubMedGoogle Scholar
  49. 49.
    Chauhan, P.S., D. Dash, and R. Singh. 2017. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma. Inflammation 40 (1): 248–258.CrossRefPubMedGoogle Scholar
  50. 50.
    Duechs, M.J., C. Tilp, C. Tomsic, F. Gantner, and K.J. Erb. 2014. Development of a Novel Severe Triple Allergen Asthma Model in Mice Which Is Resistant to Dexamethasone and Partially Resistant to TLR7 and TLR9 Agonist Treatment. PLoS One 9 (3): e91223.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pandey, A., K. Ozaki, H. Baumann, S.D. Levin, A. Puel, A.G. Farr, S.F. Ziegler, W.J. Leonard, and H.F. Lodish. 2000. Cloning of a novel receptor subunit required for signaling by thymic stromal lymphopoietin. Nature Immunology 1 (1): 59–64.CrossRefPubMedGoogle Scholar
  52. 52.
    Kaur, D., and C. Brightling. 2012. OX40/OX40 ligand interactions in T-cell regulation and asthma. Chest 141 (2): 494–499.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ahrens, B., T. Freund, R.D. Rha, A.M. Dittrich, D. Quarcoo, A. Hutloff, and E. Hamelmann. 2009. Lipopolysaccharide stimulation of dendritic cells induces interleukin-10 producing allergen-specific T cells in vitro but fails to prevent allergic airway disease. Experimental Lung Research 35 (4): 307–323.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong-tao Li
    • 1
  • Zhuang-gui Chen
    • 2
  • Yu-sen Lin
    • 1
  • Hui Liu
    • 1
  • Jin Ye
    • 3
  • Xiao-ling Zou
    • 1
  • Yan-hong Wang
    • 1
  • Hai-ling Yang
    • 1
  • Tian-tuo Zhang
    • 1
  1. 1.Department of Respiratory MedicineThe Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of PediatricsThe Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of Otolaryngology, Head and Neck SurgeryThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations