Skip to main content

Advertisement

Log in

The Anti-inflammatory Effects of 4-((5-Bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic Acid in Lipopolysaccharide-Activated Primary Microglial Cells

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Over-activated microglial cells are known to be implicated in various neurological diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis. Our previous reports have shown that ZL006, a compound with a hydrophobic ring A and a hydrophilic ring B with a carboxyl group, exhibited stronger neuroprotective activity in vitro and in vivo. However, the directly anti-inflammatory effects of these compounds in the central nervous system (CNS) have not been elucidated. In the present study, as a part of our ongoing screening experiment to evaluate the anti-inflammatory effects of new compounds, a newly synthesized 4-((5-bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid (LX007) was used to examine whether it could reduce the inflammatory responses of activated microglia. Our results indicated that LX007 inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) expression, as well as their regulatory gene-inducible NO syntheses (iNOS) and cyclooxygenase-2 (COX-2) in LPS-treated primary microglia. LPS-induced production from microglia of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF-α) was also significantly attenuated by LX007. Mechanistically, LX007 potently suppressed phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) p65 nuclear translocation in LPS-induced microglia. We therefore conclude that LX007 exhibits anti-inflammatory effects in LPS-stimulated microglial cells by inhibiting pro-inflammatory mediators corresponding to the downregulating of MAPKs and NF-κB activation. Taken together, the present study indicated that LX007 may have potential to be developed into an anti-inflammatory agent in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lucchinetti, C.F., B.F. Popescu, R.F. Bunyan, N.M. Moll, S.F. Roemer, H. Lassmann, W. Bruck, J.E. Parisi, B.W. Scheithauer, C. Giannini, S.D. Weigand, J. Mandrekar, and R.M. Ransohoff. 2011. Inflammatory cortical demyelination in early multiple sclerosis. The New England Journal of Medicine 365: 2188–2197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sarlus, H., and M.T. Heneka. 2017. Microglia in Alzheimer’s disease. The Journal of Clinical Investigation 127: 3240–3249.

    Article  PubMed  Google Scholar 

  4. Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, B., and J.S. Hong. 2003. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. The Journal of Pharmacology and Experimental Therapeutics 304: 1–7.

    Article  CAS  PubMed  Google Scholar 

  6. He, L.X., X. Tong, J. Zeng, Y. Tu, S. Wu, M. Li, H. Deng, M. Zhu, X. Li, H. Nie, L. Yang, and F. Huang. 2016. Paeonol suppresses neuroinflammatory responses in LPS-activated microglia cells. Inflammation 39: 1904–1917.

    Article  CAS  PubMed  Google Scholar 

  7. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, X., P. Yin, C. Wan, X. Chong, M. Liu, P. Cheng, J. Chen, F. Liu, and J. Xu. 2014. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-kappaB activation. Inflammation 37: 956–965.

    Article  CAS  PubMed  Google Scholar 

  9. Chao, C.C., S. Hu, T.W. Molitor, E.G. Shaskan, and P.K. Peterson. 1992. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. Journal of Immunology 149: 2736–2741.

    CAS  Google Scholar 

  10. Han, L., K. Yin, S. Zhang, Z. Wu, C. Wang, Q. Zhang, J. Pan, B. Chen, J. Li, R. Tan, and Y. Xu. 2013. Dalesconols B inhibits lipopolysaccharide induced inflammation and suppresses NF-kappaB and p38/JNK activation in microglial cells. Neurochemistry International 62: 913–921.

    Article  CAS  PubMed  Google Scholar 

  11. Xing, B., A.D. Bachstetter, and L.J. Van Eldik. 2011. Microglial p38alpha MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFalpha. Molecular Neurodegeneration 6: 84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhou, L., F. Li, H.B. Xu, C.X. Luo, H.Y. Wu, M.M. Zhu, W. Lu, X. Ji, Q.G. Zhou, and D.Y. Zhu. 2010. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nature Medicine 16: 1439–1443.

    Article  CAS  PubMed  Google Scholar 

  13. Weng, L., H. Zhang, X. Li, H. Zhan, F. Chen, L. Han, Y. Xu, and X. Cao. 2017. Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-kappaB and JAK2/STAT3 signaling pathways in microglia. International Immunopharmacology 44: 1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kyriakis, J.M., and J. Avruch. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiological Reviews 92: 689–737.

    Article  CAS  PubMed  Google Scholar 

  15. Ridder, D.A., and M. Schwaninger. 2009. NF-kappaB signaling in cerebral ischemia. Neuroscience 158: 995–1006.

    Article  CAS  PubMed  Google Scholar 

  16. Bronzuoli, M.R., A. Iacomino, L. Steardo, and C. Scuderi. 2016. Targeting neuroinflammation in Alzheimer’s disease. Journal of Inflammation Research 9: 199–208.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Shadfar, S., C.J. Hwang, M.S. Lim, D.Y. Choi, and J.T. Hong. 2015. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Archives of Pharmacal Research 38: 2106–2119.

    Article  CAS  PubMed  Google Scholar 

  18. Banati, R.B., S.E. Daniel, and S.B. Blunt. 1998. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society 13: 221–227.

    Article  CAS  Google Scholar 

  19. Knott, C., G. Stern, and G.P. Wilkin. 2000. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Molecular and Cellular Neurosciences 16: 724–739.

    Article  CAS  PubMed  Google Scholar 

  20. Imamura, K., N. Hishikawa, M. Sawada, T. Nagatsu, M. Yoshida, and Y. Hashizume. 2003. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathologica 106: 518–526.

    Article  CAS  PubMed  Google Scholar 

  21. Luth, H.J., M. Holzer, U. Gartner, M. Staufenbiel, and T. Arendt. 2001. Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer’s disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Research 913: 57–67.

    Article  CAS  PubMed  Google Scholar 

  22. Lai, K.S.P., C.S. Liu, A. Rau, K.L. Lanctot, C.A. Kohler, M. Pakosh, A.F. Carvalho, and N. Herrmann. 2017. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. Journal of neurology, neurosurgery, and psychiatry.

  23. Stypula, G., J. Kunert-Radek, H. Stepien, K. Zylinska, and M. Pawlikowski. 1996. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with Parkinson’s disease. Neuroimmunomodulation 3: 131–134.

    Article  CAS  PubMed  Google Scholar 

  24. Mrak, R.E., and W.S. Griffin. 2005. Glia and their cytokines in progression of neurodegeneration. Neurobiology of Aging 26: 349–354.

    Article  CAS  PubMed  Google Scholar 

  25. Simi, A., N. Tsakiri, P. Wang, and N.J. Rothwell. 2007. Interleukin-1 and inflammatory neurodegeneration. Biochemical Society Transactions 35: 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y.Y., Y.C. Fan, M. Wang, D. Wang, and X.H. Li. 2013. Atorvastatin attenuates the production of IL-1beta, IL-6, and TNF-alpha in the hippocampus of an amyloid beta1-42-induced rat model of Alzheimer’s disease. Clinical Interventions in Aging 8: 103–110.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lim, G.P., T. Chu, F. Yang, W. Beech, S.A. Frautschy, and G.M. Cole. 2001. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of neuroscience : the official journal of the Society for Neuroscience 21: 8370–8377.

    CAS  Google Scholar 

  28. Yang, F., G.P. Lim, A.N. Begum, O.J. Ubeda, M.R. Simmons, S.S. Ambegaokar, P.P. Chen, R. Kayed, C.G. Glabe, S.A. Frautschy, and G.M. Cole. 2005. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. The Journal of Biological Chemistry 280: 5892–5901.

    Article  CAS  PubMed  Google Scholar 

  29. Koistinaho, M., M.I. Kettunen, G. Goldsteins, R. Keinanen, A. Salminen, M. Ort, J. Bures, D. Liu, R.A. Kauppinen, L.S. Higgins, and J. Koistinaho. 2002. Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proceedings of the National Academy of Sciences of the United States of America 99: 1610–1615.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Saporito, M.S., E.M. Brown, M.S. Miller, and S. Carswell. 1999. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. The Journal of Pharmacology and Experimental Therapeutics 288: 421–427.

    CAS  PubMed  Google Scholar 

  31. Lund, S., P. Porzgen, A.L. Mortensen, H. Hasseldam, D. Bozyczko-Coyne, S. Morath, T. Hartung, M. Bianchi, P. Ghezzi, M. Bsibsi, S. Dijkstra, and M. Leist. 2005. Inhibition of microglial inflammation by the MLK inhibitor CEP-1347. Journal of Neurochemistry 92: 1439–1451.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan, L., S. Liu, X. Bai, Y. Gao, G. Liu, X. Wang, D. Liu, T. Li, A. Hao, and Z. Wang. 2016. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. Journal of Neuroinflammation 13: 77.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews. Immunology 8: 837–848.

    Article  CAS  PubMed  Google Scholar 

  34. Guo, R.B., G.F. Wang, A.P. Zhao, J. Gu, X.L. Sun, and G. Hu. 2012. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kappaB-mediated inflammatory responses. PLoS One 7: e49701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bansal, K., A.Y. Sinha, D.S. Ghorpade, S.K. Togarsimalemath, S.A. Patil, S.V. Kaveri, K.N. Balaji, and J. Bayry. 2010. Src homology 3-interacting domain of Rv1917c of Mycobacterium tuberculosis induces selective maturation of human dendritic cells by regulating PI3K-MAPK-NF-kappaB signaling and drives Th2 immune responses. The Journal of Biological Chemistry 285: 36511–36522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81701170, 81630028), the Natural Science Foundation of Jiangsu Province of China (BK20170122), the Science and Technology Department of Jiangsu Province (BE2016610), and Jiangsu Province Key Medical Discipline (ZDXKA2016020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Jin, Y., Zhang, H. et al. The Anti-inflammatory Effects of 4-((5-Bromo-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic Acid in Lipopolysaccharide-Activated Primary Microglial Cells. Inflammation 41, 530–540 (2018). https://doi.org/10.1007/s10753-017-0709-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0709-z

KEY WORDS

Navigation