Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells

Abstract

The increasing wall stress as is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. The nuclear factor of activated T cells 5 (NFAT5) pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the NFAT5 pathway was involved in the regulation of biomechanical stretch-induced human arterial smooth muscle cell (HUASMC) proliferation, inflammation, and migration. Herein, we showed that stretch promoted the expression of NFAT5 in human arterial smooth muscle cells and regulated through activation of c-Jun N-terminal kinase under these conditions. This may contribute to an improved activity of HUASMCs and thus promote reorganization in vascular remodeling processes such as hypertension-induced arterial stiffening and contractile dysfunction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 28 July 2020

    After the publication of our article, we became aware that there were errors in Fig.��3c and 3d were incorrectly presented.

References

  1. 1.

    Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. 1982. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51 (1): 19–26.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Feldner, A., H. Otto, S. Rewerk, M. Hecker, and T. Korff. 2011. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. The FASEB Journal 25 (10): 3613–3621.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Pfisterer, L., A. Feldner, M. Hecker, and T. Korff. 2012. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovascular Research 96 (1): 120–129.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Nordström, I., K. Dreja, U. Malmqvist, and P. Hellstrand. 2000. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circulation Research 87 (3): 228–234.

    Article  PubMed  Google Scholar 

  5. 5.

    Lee, Samuel, and Richard T. Lee. 2010. Mechanical stretch and intimal hyperplasia: the missing link?[J]. Arteriosclerosis Thrombosis & Vascular Biology 30 (3): 459–460.

  6. 6.

    Li, S., D.Z. Wang, Z. Wang, J.A. Richardson, and E.N. Olson. 2003. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences 100 (16): 9366–9370.

    CAS  Article  Google Scholar 

  7. 7.

    Halterman, J.A., H.M. Kwon, and B.R. Wamhoff. 2012. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology-Cell Physiology 302 (1): C1–C8.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ho, S.N. 2003. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Archives of Biochemistry and Biophysics 413 (2): 151–157.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Woo, S., S. Lee, and M.H. Kwon. 2002. TonEBP transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology 444 (5): 579–585.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Jauliac, S., C. López-Rodriguez, L.M. Shaw, L.F. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4 (7): 540–544.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    O'Connor, R.S., S.T. Mills, K.A. Jones, S.N. Ho, and G.K. Pavlath. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. Journal of Cell Science 120 (1): 149–159.

    Article  PubMed  Google Scholar 

  12. 12.

    Go, W.Y., X. Liu, M.A. Roti, F. Liu, and S.N. Ho. 2004. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10673–10678.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Halterman, J.A., H.M. Kwon, R. Zargham, P.D. Bortz, and B.R. Wamhoff. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (10): 2287–2296.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yoon, H.J., S. You, S.A. Yoo, N.H. Kim, H.M. Kwon, C.H. Yoon, C.S. Cho, D. Hwang, and W.U. Kim. 2011. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis & Rheumatology 63 (7): 1843–1852.

    CAS  Article  Google Scholar 

  15. 15.

    Machnik, A., W. Neuhofer, J. Jantsch, A. Dahlmann, T. Tammela, K. Machura, J.K. Park, F.X. Beck, D.N. Müller, W. Derer, and J. Goss. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Medicine 15 (5): 545–552.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Roth, I., V. Leroy, H.M. Kwon, P.Y. Martin, E. Féraille, and U. Hasler. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-κB activity. Molecular Biology of the Cell 21 (19): 3459–3474.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Buxadé, M., G. Lunazzi, J. Minguillón, S. Iborra, R. Berga-Bolaños, M. del Val, J. Aramburu, and C. López-Rodríguez. 2012. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 209 (2): 379–393.

  18. 18.

    Haudenschild, C.C., J.O. Grunwald, and A.V. Chobanian. 1985. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 7 (3 Pt 2): I101.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Intengan, H.D., and E.L. Schiffrin. 2000. Structure and mechanical properties of resistance arteries in hypertension. Hypertension 36 (3): 312–318.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Brady, P.S., E.A. Park, J.S. Liu, R.W. Hanson, and L.J. Brady. 1992. Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochemical Journal 286 (3): 779–783.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428 (6979): 185–189.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Chen, J., C.M. Kitchen, J.W. Streb, and J.M. Miano. 2002. Myocardin: a component of a molecular switch for smooth muscle differentiation. Journal of Molecular and Cellular Cardiology 34 (10): 1345–1356.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research project was supported by the National Natural Science Foundation of China Grant No. 81400294.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Zhang, D., Li, Q. et al. Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells. Inflammation 40, 2129–2136 (2017). https://doi.org/10.1007/s10753-017-0653-y

Download citation

KEY WORDS

  • inflammation
  • proliferation
  • migration
  • NFAT5
  • arterial smooth muscle cells