Skip to main content
Log in

Endothelial BMP4 Regulates Leukocyte Diapedesis and Promotes Inflammation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Leukocyte recruitment is a fundamental event in the response of the innate immune system to injury. This process is promoted in part by the opening of endothelial cell adherens junctions that allows leukocyte extravasation through gaps between adjacent endothelial cells. VE-cadherin is a key component of endothelial cell adherens junctions and a negative regulator of leukocyte emigration. Accumulating evidence implicates bone morphogenetic protein (BMP) 4 as a critical regulator in vascular biology, but its role in leukocyte extravasation in vitro and in vivo has not been investigated so far. To assess the impact of BMP4 on leukocyte emigration in vivo, we used the thioglycollate-induced peritonitis model. C57BL/6 mice were intraperitoneally (i.p.) injected with recombinant BMP4 in addition to thioglycollate. Compared to solvent-treated controls, we observed higher accumulation of leukocytes in the peritoneal lavage of BMP4-treated mice indicating that BMP4 promotes leukocyte diapedesis into the inflamed peritoneal cavity. Endothelial cell-specific deletion of BMP4 in mice markedly diminished leukocyte diapedesis following thioglycollate administration suggesting that endothelial BMP4 is required for leukocyte recruitment. Consistent with these in vivo results, transwell migration assays with human umbilical vein endothelial cells (HUVECs) in vitro revealed that recombinant BMP4 enhanced leukocyte transmigration through the endothelial monolayer. Conversely, silencing of endothelial BMP4 by siRNA dampened leukocyte diapedesis in vitro. Mechanistic studies showed that loss of BMP4 improved endothelial junction stability by upregulation of VE-cadherin expression in vitro and in vivo. Vice versa, treatment of HUVECs with recombinant BMP4 decreased expression of VE-cadherin and impaired endothelial junction stability shown by Western blotting and immunocytochemistry. Finally, severe endothelial damage in HUVECs in response to serum of patients collected 24 h after survived cardiac arrest was accompanied by increase in leukocyte migration in transwell assays and activation of the BMP pathway most probably by upregulation of endothelial BMP4 RNA and protein expression. Collectively, the present study provides novel evidence that endothelial BMP4 controls leukocyte recruitment through a VE-cadherin-dependent mechanism and that BMP4-induced inflammation might be involved in the pathogenesis of endothelial cell damage following successful resuscitation after cardiac arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sorescu, G.P., et al. 2003. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. The Journal of Biological Chemistry 278 (33): 31128–31135.

    Article  CAS  PubMed  Google Scholar 

  2. Rao, R.M., et al. 2007. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circulation Research 101 (3): 234–247.

    Article  CAS  PubMed  Google Scholar 

  3. Helbing, T., G. Wiltgen, A. Hornstein, E.Z. Brauers, L. A. Arnold, et al. 2017. Bone morphogenetic protein-modulator BMPER regulates endothelial barrier function. Inflammation 40 (2): 442–453. doi:10.1007/s10753-016-0490-4.

  4. Schulte, D., et al. 2011. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. The EMBO Journal 30 (20): 4157–4170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vestweber, D. 2008. VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology 28 (2): 223–232.

    Article  CAS  PubMed  Google Scholar 

  6. Vestweber, D., et al. 2009. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends in Cell Biology 19 (1): 8–15.

    Article  CAS  PubMed  Google Scholar 

  7. Gotsch, U., et al. 1997. VE-cadherin antibody accelerates neutrophil recruitment in vivo. Journal of Cell Science 110 (Pt 5): 583–588.

    CAS  PubMed  Google Scholar 

  8. Giannotta, M., M. Trani, and E. Dejana. 2013. VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity. Developmental Cell 26 (5): 441–454.

    Article  CAS  PubMed  Google Scholar 

  9. Broermann, A., et al. 2011. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. The Journal of Experimental Medicine 208 (12): 2393–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lampugnani, M.G., et al. 2002. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Molecular Biology of the Cell 13 (4): 1175–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai, J., et al. 2012. BMP signaling in vascular diseases. FEBS Letters 586 (14): 1993–2002.

    Article  CAS  PubMed  Google Scholar 

  12. Dyer, L.A., X. Pi, and C. Patterson. 2014. The role of BMPs in endothelial cell function and dysfunction. Trends in Endocrinology and Metabolism 25 (9): 472–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garcia de Vinuesa, A., et al. 2016. BMP signaling in vascular biology and dysfunction. Cytokine & Growth Factor Reviews 27: 65–79.

    Article  CAS  Google Scholar 

  14. Pardali, E., and P. Ten Dijke. 2012. TGFbeta signaling and cardiovascular diseases. International Journal of Biological Sciences 8 (2): 195–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagner, D.O., et al. 2010. BMPs: From bone to body morphogenetic proteins. Science Signaling 3 (107): mr1.

    PubMed  Google Scholar 

  16. Koga, M., et al. 2013. The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice. American Journal of Physiology. Heart and Circulatory Physiology 305 (5): H747–H755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miriyala, S., et al. 2006. Bone morphogenic protein-4 induces hypertension in mice: Role of noggin, vascular NADPH oxidases, and impaired vasorelaxation. Circulation 113 (24): 2818–2825.

    Article  CAS  PubMed  Google Scholar 

  18. Sorescu, G.P., et al. 2004. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circulation Research 95 (8): 773–779.

    Article  CAS  PubMed  Google Scholar 

  19. Chang, K., et al. 2007. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: Role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation 116 (11): 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  20. Csiszar, A., et al. 2008. Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology 295 (2): H569–H577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Csiszar, A., et al. 2007. Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: Role of shear stress and the cAMP/protein kinase A pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (4): 776–782.

    Article  CAS  PubMed  Google Scholar 

  22. Jo, H., H. Song, and A. Mowbray. 2006. Role of NADPH oxidases in disturbed flow- and BMP4-induced inflammation and atherosclerosis. Antioxidants & Redox Signaling 8 (9–10): 1609–1619.

    Article  CAS  Google Scholar 

  23. Corriere, M.A., et al. 2008. Endothelial Bmp4 is induced during arterial remodeling: Effects on smooth muscle cell migration and proliferation. The Journal of Surgical Research 145 (1): 142–149.

    Article  CAS  PubMed  Google Scholar 

  24. Bostrom, K., et al. 1993. Bone morphogenetic protein expression in human atherosclerotic lesions. The Journal of Clinical Investigation 91 (4): 1800–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bostrom, K., et al. 1995. Atherosclerotic calcification: Relation to developmental osteogenesis. The American Journal of Cardiology 75 (6): 88B–91B.

    Article  CAS  PubMed  Google Scholar 

  26. Bostrom, K.I., et al. 2011. Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circulation Research 108 (4): 446–457.

    Article  PubMed  Google Scholar 

  27. Demer, L.L., K.E. Watson, and K. Bostrom. 1994. Mechanism of calcification in atherosclerosis. Trends in Cardiovascular Medicine 4 (1): 45–49.

    Article  CAS  PubMed  Google Scholar 

  28. Csiszar, A., S. Lehoux, and Z. Ungvari. 2009. Hemodynamic forces, vascular oxidative stress, and regulation of BMP-2/4 expression. Antioxidants & Redox Signaling 11 (7): 1683–1697.

    Article  CAS  Google Scholar 

  29. Bogen, S., et al. 1994. Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. The Journal of Experimental Medicine 179 (3): 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  30. Helbing, T., et al. 2011. BMP activity controlled by BMPER regulates the proinflammatory phenotype of endothelium. Blood 118 (18): 5040–5049.

    Article  CAS  PubMed  Google Scholar 

  31. Heinke, J., et al. 2008. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circulation Research 103 (8): 804–812.

    Article  CAS  PubMed  Google Scholar 

  32. Helbing, T., et al. 2013. Inhibition of BMP activity protects epithelial barrier function in lung injury. The Journal of Pathology 231 (1): 105–116.

    Article  CAS  PubMed  Google Scholar 

  33. Winnier, G., et al. 1995. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes & Development 9 (17): 2105–2116.

    Article  CAS  Google Scholar 

  34. Muller, W.A. 2013. Getting leukocytes to the site of inflammation. Veterinary Pathology 50 (1): 7–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fink, K., et al. 2015. Selenium prevents microparticle-induced endothelial inflammation in patients after cardiopulmonary resuscitation. Critical Care 19: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grundmann, S., et al. 2012. Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation 83 (6): 715–720.

    Article  PubMed  Google Scholar 

  37. Bro-Jeppesen, J., et al. 2016. Endothelial activation/injury and associations with severity of post-cardiac arrest syndrome and mortality after out-of-hospital cardiac arrest. Resuscitation 107: 71–79.

    Article  PubMed  Google Scholar 

  38. Valdimarsdottir, G., et al. 2002. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106 (17): 2263–2270.

    Article  CAS  PubMed  Google Scholar 

  39. Vestweber, D. 2012. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Annals of the New York Academy of Sciences 1257: 184–192.

    Article  CAS  PubMed  Google Scholar 

  40. Ley, K., et al. 2007. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nature Reviews. Immunology 7 (9): 678–689.

    Article  CAS  PubMed  Google Scholar 

  41. Csiszar, A., et al. 2006. Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype. The American Journal of Pathology 168 (2): 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Csiszar, A., et al. 2005. Regulation of bone morphogenetic protein-2 expression in endothelial cells: Role of nuclear factor-kappaB activation by tumor necrosis factor-alpha, H2O2, and high intravascular pressure. Circulation 111 (18): 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  43. Wong, W.T., et al. 2010. Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: Implications on hypertension. Circulation Research 107 (8): 984–991.

    Article  CAS  PubMed  Google Scholar 

  44. Derwall, M., et al. 2012. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (3): 613–622.

    Article  CAS  PubMed  Google Scholar 

  45. Yao, Y., et al. 2010. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circulation Research 107 (4): 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Medici, D., et al. 2010. Conversion of vascular endothelial cells into multipotent stem-like cells. Nature Medicine 16 (12): 1400–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asmussen, A., et al. 2016. Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation. Critical Care 20 (1): 170.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fink, K., et al. 2011. Circulating annexin V positive microparticles in patients after successful cardiopulmonary resuscitation. Critical Care 15 (5): R251.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huet, O., et al. 2011. Postresuscitation syndrome: Potential role of hydroxyl radical-induced endothelial cell damage. Critical Care Medicine 39 (7): 1712–1720.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, S., et al. 2015. Effects of oxygen concentrations on postresuscitation myocardial oxidative stress and myocardial function in a rat model of cardiopulmonary resuscitation. Critical Care Medicine 43 (12): e560–e566.

    Article  CAS  PubMed  Google Scholar 

  51. Carmeliet, P., et al. 1999. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98 (2): 147–157.

    Article  CAS  PubMed  Google Scholar 

  52. Pachori, A.S., et al. 2010. Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. Journal of Molecular and Cellular Cardiology 48 (6): 1255–1265.

    Article  CAS  PubMed  Google Scholar 

  53. Mungrue, I.N., et al. 2011. Abcc6 deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia–reperfusion model. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (12): 2806–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Adrian Bauer and Jessica Beckert for their outstanding technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

T.H. designed and performed the research, analyzed the data, and wrote the paper; L.A., G.W., E.H., V.G., and A.H. performed the research and analyzed the data; J.S.E., P.D., and S.G. analyzed the data and contributed analytical tools; K.F. and H.J.B. provided blood samples; C.B. and M.M. wrote the paper.

Corresponding author

Correspondence to Thomas Helbing.

Ethics declarations

All procedures performed in studies involving murine or human tissues were in accordance with the ethical standards of the institution and/or national research.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by Deutsche Forschungsgemeinschaft to T.H. (HE 7432/1-1) and M.M. (MO 973/8-1) and by MSD to T.H.

Electronic supplementary material

Supplement 1

BMP4 expression in primary microvascular endothelial cells isolated from EC-BMP4+/+ and EC-BMP4−/− mice. Cells were lysed and proteins were extracted to perform Western blot analysis with a BMP4 antibody and α-tubulin antibody. (PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helbing, T., Arnold, L., Wiltgen, G. et al. Endothelial BMP4 Regulates Leukocyte Diapedesis and Promotes Inflammation. Inflammation 40, 1862–1874 (2017). https://doi.org/10.1007/s10753-017-0627-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0627-0

KEY WORDS

Navigation