Skip to main content

Advertisement

Log in

Cyclophilin A Aggravates Collagen-Induced Arthritis via Promoting Classically Activated Macrophages

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Activated macrophages exhibiting diverse phenotypes and various functions contribute to the pathogenesis or amelioration of different diseases like cancer, inflammation, and infectious and autoimmune diseases. However, the mechanisms of macrophage polarization in inflamed joint and its effects on rheumatoid arthritis (RA) are still not clarified. This study is designed to explore the effects of cyclophilin A (CypA) on macrophage polarization and describe the underlying mechanisms. Collagen-induced arthritis (CIA) was employed to address the pro-arthritic effects of CypA. Flow cytometry was performed to investigate the populations of M1 and M2 macrophages in synovial tissues of the mice. Knockdown or overexpression of CypA macrophage cells was used to study the functions of CypA on macrophage polarization. Western blot was carried out to examine the potential signaling pathways. We found that CypA aggravated the severity of CIA in mice, as assessed by the increase of clinical score of inflammation, cartilage damage, and bone erosion. Moreover, the level of cytokines, such as IL-6, IL-1β, and IL-17, and the number of pro-inflammatory macrophages in synovial fluid were significantly elevated. In accordance with our observation, CypA dysregulation could actually influence the M1 macrophages polarization and pro-inflammatory cytokines production. Further mechanism study disclosed that CypA could regulate the transcriptional activity of NF-κB, the pivotal transcriptional factor regulating M1 polarization, dependent of its PPIase activity. Our findings provide evidence that PPIase CypA promoted macrophages polarization toward pro-inflammatory M1 phenotype via transcriptional activating NF-κB, thus leading to aggravated arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamilton, J.A., and P.P. Tak. 2009. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis and Rheumatism 60 (5): 1210–1221.

    Article  PubMed  Google Scholar 

  2. Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12 (3): 231–238.

    Article  CAS  PubMed  Google Scholar 

  3. Soler Palacios, B., L. Estrada-Capetillo, E. Izquierdo, G. Criado, C. Nieto, C. Municio, I. Gonzalez-Alvaro, P. Sanchez-Mateos, J.L. Pablos, A.L. Corbi, et al. 2015. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. The Journal of Pathology 235 (3): 515–526.

    Article  CAS  PubMed  Google Scholar 

  4. Vandooren, B., T. Noordenbos, C. Ambarus, S. Krausz, T. Cantaert, N. Yeremenko, M. Boumans, R. Lutter, P.P. Tak, and D. Baeten. 2009. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis and Rheumatism 60 (4): 966–975.

    Article  CAS  PubMed  Google Scholar 

  5. Li, J., H.C. Hsu, and J.D. Mountz. 2013. The Dynamic Duo-Inflammatory M1 macrophages and Th17 cells in Rheumatic Diseases. Journal of orthopedics & rheumatology 1 (1): 4.

    Article  Google Scholar 

  6. Li, J., H.C. Hsu, P. Yang, Q. Wu, H. Li, L.E. Edgington, M. Bogyo, R.P. Kimberly, and J.D. Mountz. 2012. Treatment of arthritis by macrophage depletion and immunomodulation: Testing an apoptosis-mediated therapy in a humanized death receptor mouse model. Arthritis and Rheumatism 64 (4): 1098–1109.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, P., and J. Heitman. 2005. The cyclophilins. Genome Biology 6 (7): 226.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bosco, D.A., E.Z. Eisenmesser, S. Pochapsky, W.I. Sundquist, and D. Kern. 2002. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proceedings of the National Academy of Sciences of the United States of America 99 (8): 5247–5252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Helekar, S.A., D. Char, S. Neff, and J. Patrick. 1994. Prolyl isomerase requirement for the expression of functional homo-oligomeric ligand-gated ion channels. Neuron 12 (1): 179–189.

    Article  CAS  PubMed  Google Scholar 

  10. Ansari, H., G. Greco, and J. Luban. 2002. Cyclophilin A peptidyl-prolyl isomerase activity promotes ZPR1 nuclear export. Molecular and Cellular Biology 22 (20): 6993–7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka, H., H. Shimazaki, M. Kimura, H. Izuta, K. Tsuruma, M. Shimazawa, and H. Hara. 2011. Apoptosis-inducing factor and cyclophilin A cotranslocate to the motor neuronal nuclei in amyotrophic lateral sclerosis model mice. CNS Neuroscience & Therapeutics 17 (5): 294–304.

    Article  CAS  Google Scholar 

  12. Zhu, C., X. Wang, J. Deinum, Z. Huang, J. Gao, N. Modjtahedi, M.R. Neagu, M. Nilsson, P.S. Eriksson, H. Hagberg, et al. 2007. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. The Journal of Experimental Medicine 204 (8): 1741–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bauer, K., A.K. Kretzschmar, H. Cvijic, C. Blumert, D. Loffler, K. Brocke-Heidrich, C. Schiene-Fischer, G. Fischer, A. Sinz, C.V. Clevenger, et al. 2009. Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells. Oncogene 28 (31): 2784–2795.

    Article  CAS  PubMed  Google Scholar 

  14. Colgan, J., M. Asmal, B. Yu, and J. Luban. 2005. Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine. Journal of Immunology 174 (10): 6030–6038.

    Article  CAS  Google Scholar 

  15. Wang, L., N.N. Soe, M. Sowden, Y. Xu, K. Modjeski, P. Baskaran, Y. Kim, E.M. Smolock, C.N. Morrell, and B.C. Berk. 2014. Cyclophilin a is an important mediator of platelet function by regulating integrin alphaIIbbeta3 bidirectional signalling. Thrombosis and Haemostasis 111 (5): 873–882.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, C., Z. Sun, Y. Sun, X. Chen, X. Zhu, C. Fan, B. Liu, Y. Zhao, and W. Zhang. 2012. Association of increased ligand cyclophilin A and receptor CD147 with hypoxia, angiogenesis, metastasis and prognosis of tongue squamous cell carcinoma. Histopathology 60 (5): 793–803.

    Article  PubMed  Google Scholar 

  17. Satoh, K., T. Satoh, N. Kikuchi, J. Omura, R. Kurosawa, K. Suzuki, K. Sugimura, T. Aoki, K. Nochioka, S. Tatebe, et al. 2014. Basigin mediates pulmonary hypertension by promoting inflammation and vascular smooth muscle cell proliferation. Circulation Research 115 (8): 738–750.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, J., Z.G. Jin, D.F. Meoli, T. Matoba, and B.C. Berk. 2006. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circulation Research 98 (6): 811–817.

    Article  CAS  PubMed  Google Scholar 

  19. Yurchenko, V., G. Zybarth, M. O’Connor, W.W. Dai, G. Franchin, T. Hao, H. Guo, H.C. Hung, B. Toole, P. Gallay, et al. 2002. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. The Journal of Biological Chemistry 277 (25): 22959–22965.

    Article  CAS  PubMed  Google Scholar 

  20. Fan, L.M., G. Douglas, J.K. Bendall, E. McNeill, M.J. Crabtree, A.B. Hale, A. Mai, J.M. Li, M.A. McAteer, J.E. Schneider, et al. 2014. Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation 129 (25): 2661–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qing, J., Y. Wang, Y. Sun, J. Huang, W. Yan, J. Wang, D. Su, C. Ni, J. Li, Z. Rao, et al. 2014. Cyclophilin a associates with enterovirus-71 virus capsid and plays an essential role in viral infection as an uncoating regulator. PLoS Pathogens 10 (10): e1004422.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, C.H., H. Yao, L.N. Chen, J.F. Jia, L. Wang, J.Y. Dai, Z.H. Zheng, Z.N. Chen, and P. Zhu. 2012. CD147 induces angiogenesis through a vascular endothelial growth factor and hypoxia-inducible transcription factor 1alpha-mediated pathway in rheumatoid arthritis. Arthritis and Rheumatism 64 (6): 1818–1827.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, L., C.H. Wang, J.F. Jia, X.K. Ma, Y. Li, H.B. Zhu, H. Tang, Z.N. Chen, and P. Zhu. 2010. Contribution of cyclophilin a to the regulation of inflammatory processes in rheumatoid arthritis. Journal of Clinical Immunology 30 (1): 24–33.

    Article  PubMed  Google Scholar 

  24. Yang, Y., N. Lu, J. Zhou, Z.N. Chen, and P. Zhu. 2008. Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology 47 (9): 1299–1310.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, H., W.J. Kim, S.T. Jeon, E.M. Koh, H.S. Cha, K.S. Ahn, and W.H. Lee. 2005. Cyclophilin A may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix deganrading enzymes and inflammatory cytokines from macrophages. Clinical Immunology 116 (3): 217–224.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L., J. Jia, C. Wang, X. Ma, C. Liao, Z. Fu, B. Wang, X. Yang, P. Zhu, Y. Li, et al. 2013. Inhibition of synovitis and joint destruction by a new single domain antibody specific for cyclophilin A in two different mouse models of rheumatoid arthritis. Arthritis Research & Therapy 15 (6): R208.

    Article  Google Scholar 

  27. Brand, D.D., K.A. Latham, and E.F. Rosloniec. 2007. Collagen-induced arthritis. Nature Protocols 2 (5): 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, P., X.Y. Li, H.K. Wang, J.F. Jia, Z.H. Zheng, J. Ding, and C.M. Fan. 2007. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis. Clinical Immunology 122 (1): 75–84.

    Article  CAS  PubMed  Google Scholar 

  29. Ye, L., Z. Wen, Y. Li, B. Chen, T. Yu, L. Liu, J. Zhang, Y. Ma, S. Xiao, L. Ding, et al. 2014. Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor gammat production in macrophages and repression of classically activated macrophages. Arthritis Research & Therapy 16 (2): R96.

    Article  Google Scholar 

  30. Donlin, L.T., A. Jayatilleke, E.G. Giannopoulou, G.D. Kalliolias, and L.B. Ivashkiv. 2014. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. Journal of Immunology 193 (5): 2373–2383.

    Article  CAS  Google Scholar 

  31. McInnes, I.B., and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology 7 (6): 429–442.

    Article  CAS  PubMed  Google Scholar 

  32. Misharin, A.V., C.M. Cuda, R. Saber, J.D. Turner, A.K. Gierut, G.K. Haines 3rd, S. Berdnikovs, A. Filer, A.R. Clark, C.D. Buckley, et al. 2014. Nonclassical Ly6C(−) monocytes drive the development of inflammatory arthritis in mice. Cell Reports 9 (2): 591–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation 122 (3): 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun, S., M. Guo, J.B. Zhang, A. Ha, K.K. Yokoyama, and R.H. Chiu. 2014. Cyclophilin A (CypA) interacts with NF-kappaB subunit, p65/RelA, and contributes to NF-kappaB activation signaling. PloS One 9 (8): e96211.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Banjun Ruan for providing valuable suggestions to our revised manuscript. This work was supported by the National Natural Science Foundation of China (Grant Numbers 81102259).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Wang L and Lu ZF had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study conception and design: Wang L and Lu ZF.

Acquisition of data: Zhai DS, Fu ZG, and Jia JF.

Analysis and interpretation of data: Wang L, Zhai DS, and Fu ZG.

Corresponding authors

Correspondence to Lu Zifan or Wang Li.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the regional ethics committee from First Affiliated Hospital of Fourth Military Medical University and with the 1964 Helsinki Declaration and its later amendments. All procedures performed in studies involving animals were in accordance with the ethical standards of the Laboratory Animal Center of Fourth Military Medical University institution.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Zhai Dongsheng and Fu Zhiguang are authors contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongsheng, Z., Zhiguang, F., Junfeng, J. et al. Cyclophilin A Aggravates Collagen-Induced Arthritis via Promoting Classically Activated Macrophages. Inflammation 40, 1761–1772 (2017). https://doi.org/10.1007/s10753-017-0619-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0619-0

KEY WORDS

Navigation