Skip to main content

Advertisement

Log in

Experimental Sepsis Severity Score Associated to Mortality and Bacterial Spreading is Related to Bacterial Load and Inflammatory Profile of Different Tissues

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Pneumonia-induced sepsis is responsible for about 50% of cases in the world. Patients who develop severe sepsis and septic shock present organ dysfunction and elevated plasma cytokine levels, which may lead to death. Clinical scores are important to evaluate the framework of septic patients and are used to predict the syndrome progress, prognostics, and mortality. The objective of the present study was to verify the applicability of a murine clinical score system to experimental sepsis (pneumonia-induced sepsis in male mice) and to correlate it with mortality and bacterial dissemination in different organs. Results demonstrated that animals which present higher clinical scores (>3) are more likely to die. Animals presenting high clinical scores exhibited transient bacteremia and displayed bacterial spreading to different organs such as heart, kidney, liver, and brain. There is a correlation between clinical score and bacterial dissemination and consequently greater risk of death. In addition, animals which showed bacterial dissemination in more than three organs and high clinical scores presented high levels of cytokines (TNF-α, MCP-1, IL-6, and IL-10) in plasma, lung, heart, liver, kidney, and brain. Therefore, our study suggests that (1) severity scores have predictive power in experimental models of sepsis and (2) high concentrations of tissue cytokines may contribute to localized inflammation and be one of the factors responsible for the systemic inflammatory syndrome of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teles, J.M., E. Silva, G. Westphal, R.C. Filho, and F.R. Machado. 2008. Surviving sepsis campaign in Brazil. Shock 30: 47–52.

    Article  PubMed  Google Scholar 

  2. GBD 2013 Mortality and Causes of Death Collaborators. 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 385: 117–171.

    Article  Google Scholar 

  3. Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, K. Reinhart, and International Forum of Acute Care Trialists. 2016. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. American Journal of Respiratory and Critical Care Medicine 193: 259–272.

    Article  CAS  PubMed  Google Scholar 

  4. Lever, A., and I. Mackenzie. 2007. Sepsis: definition, epidemiology, and diagnosis. BMJ 335: 879–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Opal, S.M., R.P. Dellinger, J.L. Vincent, H. Masur, and D.C. Angus. 2014. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Critical Care Medicine 42: 1714–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang, R., and J.B. Holcomb. 2016. Choice of fluid therapy in the initial management of sepsis, severe sepsis, and septic shock. Shock 46: 17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Metnitz, P.G., R.P. Moreno, E. Almeida, B. Jordan, P. Bauer, R.A. Campos, G. Iapichino, D. Edbrooke, M. Capuzzo, J.R. Le Gall, and SAPS 3 Investigators. 2005. SAPS 3—from evaluation of the patient to evaluation of the intensive care unit. Part 1: objectives, methods and cohort description. Intensive Care Medicine 31: 1336–1344.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vincent, J.L., and R. Moreno. 2010. Clinical review: scoring systems in the critically ill. Critical Care 14: 207.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Serpa, Neto A., M.S. Assunção, A. Pardini, and E. Silva. 2015. Feasibility of transitioning from APACHE II to SAPS III as prognostic model in a Brazilian general intensive care unit: a retrospective study. Sao Paulo Medical Journal 133: 199–205.

    Article  Google Scholar 

  10. Shaver, C.M., and A.R. Hauser. 2004. Relative contributions of Pseudomonas aeruginosa EXOu, EXOs, and EXOt to virulence in the lung. Infection and Immunity 72: 6969–6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Machado, G.B., M.C. de Assis, R. Leão, A.M. Saliba, M.C. Silva, J.H. Suassuna, A.V. de Oliveira, and M.C. Plotkowski. 2010. Exou-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock 33: 315–321.

    Article  PubMed  Google Scholar 

  12. Sordi, R., O. Menezes-De-Lima, A.M. Della-Justina, E. Rezende, and J. Assreuy. 2013. Pneumonia-induced sepsis in mice: temporal study of inflammatory and cardiovascular parameters. International Journal of Experimental Patholology 94: 144–155.

    Article  CAS  Google Scholar 

  13. Horewicz, V., S. Crestani, R. de Sordi, E. Rezende, and J. Assreuy. 2015. Fpr2/Alx activation reverses LPS-induced vascular hyporeactivity in aorta and increases survival in a pneumosepsis model. European Journal of Pharmacology 746: 267–273.

    Article  CAS  PubMed  Google Scholar 

  14. Bewick, V., L. Cheek, and J. Ball. 2004. Statistics review 13: Receiver operating characteristic curves. Critical Care 8: 508–512.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Youden, W.J. 1950. Index for rating diagnostic tests. Cancer 3: 32–35.

    Article  CAS  PubMed  Google Scholar 

  16. Mayr, F.B., S. Yende, and D.C. Angus. 2014. Epidemiology of severe sepsis. Virulence 5: 4–11.

    Article  PubMed  Google Scholar 

  17. Czaikoski, P.G., D.C. Nascimento, F. Sônego, A. De Freitas, W.M. Turato, M.A. De Carvalho, R.S. Santos, G.P. De Oliveira, C. Dos Santos Samary, C. Tefe-Silva, J.C. Alves-Filho, S.H. Ferreira, M.A. Rossi, P.R. Rocco, F. Spiller, and F.Q. Cunha. 2013. Heme oxygenase inhibition enhances neutrophil migration into the bronchoalveolar spaces and improves the outcome of murine pneumonia-induced sepsis. Shock 39: 389–396.

    Article  CAS  PubMed  Google Scholar 

  18. De Stoppelaar, S.F., T.A. Claushuis, M.P. Jansen, B. Hou, J.J. Roelofs, C. Van ’T Veer, and T. Van Der Poll. 2015. The role of platelet myd88 in host response during gram-negative sepsis. Journal of Thrombosis and Haemostasis 13: 1709–1720.

    Article  CAS  PubMed  Google Scholar 

  19. de Souza Nogueira, L., M.R. Santos, S.E. Mataloun, and M. Moock. 2007. Nursing activities score: comparison among the index APACHE II and the mortality in patients admitted in intensive care unit. Revista Brasileira de Terapia Intensiva 19: 327–330.

    Article  Google Scholar 

  20. Hwang, S.Y., J.H. Lee, Y.H. Lee, C.K. Hong, A.J. Sung, and Y.C. Choi. 2012. Comparison of the sequential organ failure assessment, acute physiology and chronic health evaluation II scoring system, and trauma and injury severity score method for predicting the outcomes of intensive care unit trauma patients. The American Journal of Emergency Medicine 30: 749–753.

    Article  PubMed  Google Scholar 

  21. Huet, O., D. Ramsey, S. Miljavec, A. Jenney, C. Aubron, A. Aprico, N. Stefanovic, B. Balkau, G.A. Head, J.B. de Haan, and J.P. Chin-Dusting. 2013. Ensuring animal welfare while meeting scientific aims using a murine pneumonia model of septic shock. Shock 39: 488–494.

    Article  PubMed  Google Scholar 

  22. Shrum, B., R.V. Anantha, S.X. Xu, M. Donnelly, S.M.M. Haeryfar, J.K. McCormick, and T. Mele. 2014. A robust scoring system to evaluate sepsis severity in an animal model. BMC Research Notes 7: 233–243.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brun-Buisson, C., F. Doyon, and J. Carlet. 1996. Bacteremia and severe sepsis in adults: a multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. American Journal of Respiratory and Critical Care Medicine 154: 617–624.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, S.C., K.M. Liao, C.W. Chen, and W.C. Lin. 2013. Positive blood culture is not associated with increased mortality in patients with sepsis-induced acute respiratory distress syndrome. Respirology 18: 1210–1216.

    Article  PubMed  Google Scholar 

  25. de Boer, J.D., L.M. Kager, J.J. Roelofs, J.C. Meijers, O.J. de Boer, H. Weiler, B. Isermann, C. van’t Veer, and T. van der Poll. 2014. Overexpression of activated protein C hampers bacterial dissemination during Pneumococcal pneumonia. BMC Infectious Diseases 14: 559–568.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellomo, R., C. Ronco, J.A. Kellum, R.L. Mehta, P. Palevsky, and Acute Dialysis Quality Initiative Workgroup. 2004. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care 8: 204–212.

    Article  Google Scholar 

  27. Chawla, L.S., P.W. Eggers, R.A. Star, and P.L. Kimmel. 2014. Acute kidney injury and chronic kidney disease as interconnected syndromes. New England Journal Medicine 371: 58–66.

    Article  Google Scholar 

  28. Schortgen, F., and P. Asfar. 2015. Update in sepsis and acute kidney injury. American Journal of Respiratory and Critical Care Medicine 191: 1226–1231.

    Article  CAS  PubMed  Google Scholar 

  29. Linder, A., C. Fjell, A. Levin, K.R. Walley, J.A. Russell, and J.H. Boyd. 2014. Small acute increases in serum creatinine are associated with decreased long-term survival in the critically ill. American Journal of Respiratory and Critical Care Medicine 189: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  30. Hua, L., J.J. Hilliard, Y. Shi, C. Tkaczyk, L.I. Cheng, X. Yu, V. Datta, S. Ren, H. Feng, R. Zinsou, A. Keller, T. O’day, Q. Du, L. Cheng, M. Damschroder, G. Robbie, J. Suzich, C.K. Stover, and B.R. Sellman. 2014. Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrobials Agents and Chemotherapy 58: 1108–1117.

    Article  CAS  Google Scholar 

  31. Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30: 16–34.

    Article  CAS  PubMed  Google Scholar 

  32. Beaufort, N., E. Corvazier, A. Hervieu, C. Choqueux, M. Dussiot, L. Louedec, A. Cady, S. De Bentzmann, J.B. Michel, and D. Pidard. 2011. The thermolysin-like metalloproteinase and virulence factor LasB from pathogenic Pseudomonas aeruginosa induces anoikis of human vascular cells. Cellular Microbiology 13: 1149–1167.

    Article  CAS  PubMed  Google Scholar 

  33. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, K.A. Weiss Brown, and D.F. Treacher. 2006. Neutrophils as potential therapeutic targets in sepsis. Discovery Medicine 6: 118–122.

    Google Scholar 

  34. Fuchs, T.A., A. Brill, D. Duerschmied, D. Schatzberg, M. Monestier, D.D. Myers Jr., S.K. Wrobleski, T.W. Wakefield, J.H. Hartwig, and D.D. Wagner. 2010. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences 107: 15880–15885.

    Article  CAS  Google Scholar 

  35. Augustin, P., G. Alsalih, Y. Launey, S. Delbosc, L. Louedec, V. Ollivier, F. Chau, P. Montravers, X. Duval, J.B. Michel, and O. Meilhac. 2013. Predominant role of host proteases in myocardial damage associated with infectious endocarditis induced by Enterococcus faecalis in a rat model. Infection and Immunity 81: 1721–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Girard, T.D., J.C. Jackson, P.P. Pandharipande, B.T. Pun, J.L. Thompson, A.K. Shintani, S.M. Gordon, A.E. Canonico, R.S. Dittus, G.R. Bernard, and E.W. Ely. 2010. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Critical Care Medicine 38: 1513–1520.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iwashyna, T.J., E.W. Ely, D.M. Smith, and L.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304: 1787–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Damas, P., A. Reuter, P. Gysen, J. Demonty, M. Lamy, and P. Franchimont. 1989. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Critical Care Medicine 17: 975–978.

    Article  CAS  PubMed  Google Scholar 

  39. Waage, A., T. Espevik, and J. Lamvik. 1986. Detection of tumour necrosis factor-like cytotoxicity in serum from patients with septicaemia but not from untreated cancer patients. Scandinavian Journal of Immunology 24: 739–743.

    Article  CAS  PubMed  Google Scholar 

  40. Michie, H.R., K.R. Manogue, D.R. Spriggs, A. Revhaug, S. O’dwyer, C.A. Dinarello, A. Cerami, S.M. Wolff, and D.W. Wilmore. 1988. Detection of circulating tumor necrosis factor after endotoxin administration. New England Journal of Medicine 318: 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  41. Bozza, F.A., J.I. Salluh, A.M. Japiassu, M. Soares, E.F. Assis, R.N. Gomes, M.T. Bozza, H.C. Castro-Faria-Neto, and P.T. Bozza. 2007. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Critical Care 11: R49.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Den Berg, S., J.D. Laman, L. Boon, M.T. Ten Kate, G.J. de Knegt, R.M. Verdijk, H.A. Verbrugh, J.L. Nouwen, and I.A. Bakker-Woudenberg. 2013. Distinctive cytokines as biomarkers predicting fatal outcome of severe Staphylococcus aureus bacteremia in mice. PloS One 8: E59107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaner, Z., D.E. Ochayon, G. Shahaf, B.M. Baranovski, N. Bahar, M. Mizrahi, and E.C. Lewis. 2015. Acute phase protein α1-antitrypsin reduces the bacterial burden in mice by selective modulation of innate cell responses. Journal of Infectious Diseases 211: 1489–1498.

    Article  PubMed  Google Scholar 

  44. Zhao, H.Q., W.M. Li, Z.Q. Lu, Z.Y. Sheng, and Y.M. Yao. 2015. The growing spectrum of anti-inflammatory interleukins and their potential roles in the development of sepsis. Journal of Interferon & Cytokine Research 35: 242–251.

    Article  CAS  Google Scholar 

  45. Merx, M.W., and C. Weber. 2007. Sepsis and the heart. Circulation 116: 793–802.

    Article  CAS  PubMed  Google Scholar 

  46. Horton, J., D. Maass, J. White, and B. Sanders. 2006. Effect of aspiration pneumonia-induced sepsis on post-burn cardiac inflammation and function in mice. Surgical Infections 7: 123–135.

    Article  PubMed  Google Scholar 

  47. Hobai, I.A., J.C. Morse, D.A. Siwik, and W.S. Colucci. 2015. Lipopolysaccharide and cytokines inhibit rat cardiomyocyte contractility in vitro. The Journal of Surgical Research 193: 888–901.

    Article  CAS  PubMed  Google Scholar 

  48. Ysebaert, D.K., K.E. de Greef, S.R. Vercauteren, M. Ghielli, G.A. Verpooten, E.J. Eyskens, and M.E. de Broe. 2000. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association—European Renal Association 15: 1562–1574.

    Article  CAS  Google Scholar 

  49. Cogen, A.L., and T.A. Moore. 2009. Beta2-microglobulin-dependent bacterial clearance and survival during murine Klebsiella pneumoniae bacteremia. Infection and Immunity 77: 360–366.

    Article  CAS  PubMed  Google Scholar 

  50. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. Van Der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315: 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from CNPq, Brazil (grant 474295/2012-5) and FAPESC, Brazil (grant 2014TR1698). The skillful technical assistance of Mrs. Adriane Madeira is gratefully acknowledged. We also thank the technicians of Multiuser Laboratory of Biology Studies (LAMEB-UFSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Assreuy.

Ethics declarations

Conflict of Interest

We declare we do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, M.C., Horewicz, V.V., Lückemeyer, D.D. et al. Experimental Sepsis Severity Score Associated to Mortality and Bacterial Spreading is Related to Bacterial Load and Inflammatory Profile of Different Tissues. Inflammation 40, 1553–1565 (2017). https://doi.org/10.1007/s10753-017-0596-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0596-3

KEY WORDS

Navigation