Skip to main content

Advertisement

Log in

Protective Effects of Acupuncture in Cardiopulmonary Bypass-Induced Lung Injury in Rats

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute lung injury caused by cardiopulmonary bypass (CPB) increases the mortality after cardiac surgery. Our previous clinical study suggested that electroacupuncture (EAc) has a protective effect during CPB, but the mechanism was unclear. So, we design this study to investigate the effects of EAc on CPB-induced lung injury and the underlying mechanism. Male Sprague Dawley rats were randomly divided into control, CPB, and CPB + EAc groups. A lung injury model was created by CPB surgery to serve as the CPB group, and EAc (2/100 Hz) was used before CPB in the CPB + EAc group. Lung tissue was collected at 0.5, 1, and 2 h after CPB. Pulmonary malondialdehyde (MDA) concentrations as well as superoxide dismutase (SOD), myeloperoxidase (MPO), and caspase-3 activity were determined. c-Jun N-terminal kinase (JNK), ERK, p38 and cleaved caspase 3 in the lung were analyzed by western blotting. A549 cells were treated by rat serum from the CPB and CPB + EAc groups, and cleaved caspase-3 activity was detected by fluorescent immunohistochemistry. CPB significantly increased the MPO activity, MDA content, apoptosis, caspase-3 activity, and phosphorylated p38 but decreased SOD activity compared with the control group. EAc significantly increased SOD activity at 0.5 and 2 h (p < 0.01 vs CPB) and reduced CPB-induced histological changes, MPO activity at 1 and 2 h (p < 0.05 vs CPB), MDA content at 2 h (p < 0.05 vs CPB), caspase-3 activity at 1 h (p < 0.05 vs CPB), and phosphorylated p38 and JNK at 0.5 h after CPB. The serum from the CPB group increased more positive staining cells of cleaved caspase-3 than that from the CPB + EAc group. EAc reversed the CPB-induced lung inflammation, oxidative damage, and apoptosis; the mechanism may involve decreased phosphorylation of p38 along with caspase-3 activity and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zakkar, M., G. Guida, M.S. Suleiman, and G.D. Angelini. 2015. Cardiopulmonary bypass and oxidative stress. Oxidative Medicine and Cellular Longevity 2015: 189863.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pelosi, A., L.K. Anderson, J. Paugh, S. Robinson, and G.E. Eyster. 2013. Challenges of cardiopulmonary bypass–a review of the veterinary literature. Veterinary Surgery 42: 119–136.

    Article  PubMed  Google Scholar 

  3. Paparella, D., T.M. Yau, and E. Young. 2002. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. European Journal of Cardio-Thoracic Surgery 21: 232–244.

    Article  CAS  PubMed  Google Scholar 

  4. Murkin, J.M. 1997. Cardiopulmonary bypass and the inflammatory response: a role for serine protease inhibitors? Journal of Cardiothoracic and Vascular Anesthesia 11: 19–23 discussion 24-5.

    Article  CAS  PubMed  Google Scholar 

  5. Huffmyer, J.L., and D.S. Groves. 2015. Pulmonary complications of cardiopulmonary bypass. Best Practice & Research. Clinical Anaesthesiology 29: 163–175.

    Article  Google Scholar 

  6. Cheng, S.B., and L.K. Ding. 1973. Practical application of acupuncture analgesia. Nature 242: 559–560.

    Article  CAS  PubMed  Google Scholar 

  7. Ernst, E. 2009. Acupuncture: what does the most reliable evidence tell us? Journal of Pain and Symptom Management 37: 709–714.

    Article  PubMed  Google Scholar 

  8. Cressey, D. 2010. Acupuncture for mice. Nature 465: 538.

    Article  CAS  PubMed  Google Scholar 

  9. Burnstock, G. 2009. Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Medical Hypotheses 73: 470–472.

    Article  CAS  PubMed  Google Scholar 

  10. Goldman, N., M. Chen, T. Fujita, Q. Xu, W. Peng, W. Liu, et al. 2010. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neuroscience 13: 883–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, H.Y., J. Wang, I. Lee, H.K. Kim, K. Chung, and J.M. Chung. 2009. Electroacupuncture suppresses capsaicin-induced secondary hyperalgesia through an endogenous spinal opioid mechanism. Pain 145: 332–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, J., H. Chi, T.O. Cheng, T.Y. Chen, Y.Y. Wu, W.X. Zhou, et al. 2011. Acupuncture anesthesia for open heart surgery in contemporary China. International Journal of Cardiology 150: 12–16.

    Article  PubMed  Google Scholar 

  13. Engels, M., E. Bilgic, A. Pinto, E. Vasquez, L. Wollschlager, H. Steinbrenner, et al. 2014. A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J Inflamm (Lond) 11: 26.

    Article  Google Scholar 

  14. Li, W., B. Zheng, H. Xu, Y. Deng, S. Wang, X. Wang, et al. 2013. Isoflurane prevents neurocognitive dysfunction after cardiopulmonary bypass in rats. Journal of Cardiothoracic and Vascular Anesthesia 27: 502–509.

    Article  CAS  PubMed  Google Scholar 

  15. Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, et al. 2011. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. American Journal of Respiratory Cell and Molecular Biology 44: 725–738.

    Article  CAS  PubMed  Google Scholar 

  16. Bradley, P.P., D.A. Priebat, R.D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology 78: 206–209.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y., J. Liu, S. Wang, B. Ji, Y. Tang, A. Wu, et al. 2012. Early changes in cerebral oxidative stress and apoptotic neuronal injury after various flows for selective cerebral perfusion in piglets. Perfusion 27: 419–425.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, B., D. Ye, and Y. Wang. 2013. Caspase-3 as a therapeutic target for heart failure. Expert Opinion on Therapeutic Targets 17: 255–263.

    Article  CAS  PubMed  Google Scholar 

  19. Mazumder, S., D. Plesca, and A. Almasan. 2008. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods in Molecular Biology 414: 13–21.

    CAS  PubMed  Google Scholar 

  20. Ni, X., Y. Xie, Q. Wang, H. Zhong, M. Chen, F. Wang, et al. 2012. Cardioprotective effect of transcutaneous electric acupoint stimulation in the pediatric cardiac patients: a randomized controlled clinical trial. Paediatric Anaesthesia 22: 805–811.

    Article  PubMed  Google Scholar 

  21. Fu, S.P., S.Y. He, B. Xu, C.J. Hu, S.F. Lu, W.X. Shen, et al. 2014. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene. PloS One 9: e94604.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gao, J., W. Fu, Z. Jin, and X. Yu. 2007. Acupuncture pretreatment protects heart from injury in rats with myocardial ischemia and reperfusion via inhibition of the beta(1)-adrenoceptor signaling pathway. Life Sciences 80: 1484–1489.

    Article  CAS  PubMed  Google Scholar 

  23. Royston, D., B.D. Minty, T.W. Higenbottam, J. Wallwork, and G.J. Jones. 1985. The effect of surgery with cardiopulmonary bypass on alveolar-capillary barrier function in human beings. The Annals of Thoracic Surgery 40: 139–143.

    Article  CAS  PubMed  Google Scholar 

  24. Asimakopoulos, G., P.L. Smith, C.P. Ratnatunga, and K.M. Taylor. 1999. Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. The Annals of Thoracic Surgery 68: 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  25. Thompson, C.B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  26. Owais, K., T. Huang, F. Mahmood, J. Hubbard, R. Saraf, A. Bardia, et al. 2015. Cardiopulmonary bypass decreases activation of the signal transducer and activator of transcription 3 (STAT3) pathway in diabetic human myocardium. The Annals of Thoracic Surgery 100: 1636–1645.

    Article  PubMed  Google Scholar 

  27. Stassano, P., L. Di Tommaso, M. Monaco, G. Mastrogiovanni, A. Musumeci, A. Contaldo, et al. 2010. Left heart pump-assisted myocardial revascularization favorably affects neutrophil apoptosis. World Journal of Surgery 34: 652–657.

    Article  PubMed  Google Scholar 

  28. Yeh, C.H., T.P. Chen, Y.C. Wang, Y.M. Lin, and P.J. Lin. 2009. HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. The Journal of Surgical Research 155: 147–156.

    Article  CAS  PubMed  Google Scholar 

  29. Yeh, C.H., T.P. Chen, C.H. Lee, Y.C. Wu, Y.M. Lin, and Lin P. Jing. 2006. Inhibition of poly(adp-ribose) polymerase reduces cardiomyocytic apoptosis after global cardiac arrest under cardiopulmonary bypass. Shock 25: 168–175.

    Article  CAS  PubMed  Google Scholar 

  30. Goebel, U., M. Siepe, A. Mecklenburg, P. Stein, M. Roesslein, C.I. Schwer, et al. 2008. Carbon monoxide inhalation reduces pulmonary inflammatory response during cardiopulmonary bypass in pigs. Anesthesiology 108: 1025–1036.

    Article  CAS  PubMed  Google Scholar 

  31. Qu, X., Q. Li, X. Wang, X. Yang, and D. Wang. 2013. N-acetylcysteine attenuates cardiopulmonary bypass-induced lung injury in dogs. Journal of Cardiothoracic Surgery 8: 107.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Acioli, P.C., O. Albuquerque Ade, I.B. Guimaraes, R.W. Araujo, P.R. Vasconcelos, and S.B. Guimaraes. 2014. Protective effects of abdominal electroacupuncture on oxidative stress and inflammation due to testis torsion/detorsion in rats. Acta Cirúrgica Brasileira 29: 450–456.

    Article  PubMed  Google Scholar 

  33. Xia, Z., M. Dickens, J. Raingeaud, R.J. Davis, and M.E. Greenberg. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, S., X.P. Zhang, N.N. Han, S. Lv, and J.Y. Xiong. 2015. Pretreatment with low dose etomidate prevents etomidate-induced rat adrenal insufficiency by regulating oxidative stress-related MAPKs and apoptosis. Environmental Toxicology and Pharmacology 39: 1212–1220.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong, L.R., X. Chen, and K.M. Wei. 2013. Radix tetrastigma hemsleyani flavone induces apoptosis in human lung carcinoma a549 cells by modulating the MAPK pathway. Asian Pacific Journal of Cancer Prevention 14: 5983–5987.

    Article  PubMed  Google Scholar 

  36. Schuh, K., and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochemical Pharmacology 77: 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  37. Uhlig, U., J.J. Haitsma, T. Goldmann, D.L. Poelma, B. Lachmann, and S. Uhlig. 2002. Ventilation-induced activation of the mitogen-activated protein kinase pathway. The European Respiratory Journal 20: 946–956.

    Article  CAS  PubMed  Google Scholar 

  38. Ding, J., Q. Zhang, Q. Luo, Y. Ying, Y. Liu, Y. Li, et al. 2016. Alda-1 attenuates lung ischemia-reperfusion injury by reducing 4-hydroxy-2-nonenal in alveolar epithelial cells. Critical Care Medicine 44: e544–e552.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81202748 to CHS, 81170536 to LZG, and 81570056 to THF).

Author information

Authors and Affiliations

Authors

Contributions

CHS, THF, MW, and LZG designed the study and wrote the manuscript. MW, LZ, YZW, and ZJ prepared the CPB model and harvested the lung samples. LZG and TWL completed the determination of WB, MPO, and MDA. MW, LZG, and ZZW did the histology, and LZG and LYJ determined the activation of caspase3 in lung and cell. All authors approved the final version of the paper.

Corresponding authors

Correspondence to Huifang Tang or Huashun Cui.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Li, Z., Lu, Z. et al. Protective Effects of Acupuncture in Cardiopulmonary Bypass-Induced Lung Injury in Rats. Inflammation 40, 1275–1284 (2017). https://doi.org/10.1007/s10753-017-0570-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0570-0

KEY WORDS

Navigation