Skip to main content
Log in

Inflammatory and Oxidative Stress Markers in Experimental Allergic Asthma

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Ovalbumin-induced allergic lung inflammation (ALI) is a condition believed to be mediated by cytokines, extracellular matrix remodeling, and redox imbalance. In this study, we evaluated pulmonary function together with inflammatory markers as interleukin-4 (IL-4), myeloperoxidase (MPO), eosinophil cells, and redox markers in the lungs of BALB/c mice after ovalbumin (OVA) sensitization and challenge. Our results showed an increase in bronchial hyperresponsiveness stimulated by methacholine (Mch), inflammatory cell influx, especially eosinophils together with an increase of high mobility group box 1 (HMGB1) and altered lipid peroxidation (LP) and antioxidant defenses in the OVA group compared to the control group (p ≤ 0.5). Thus, we demonstrated that OVA-induced ALI altered redox status concomitantly with impaired lung function, which was associated with HMGB1 expression and proteolytic remodeling. Taken together all results found here, we may suggest HMGB1 is an important therapeutic target for asthma, once orchestrates the redox signaling, inflammation, and remodeling that contribute to the disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wurst, K.E., et al. 2016. Understanding asthma-chronic obstructive pulmonary disease overlap syndrome. Respiratory Medicine 110: 1–11.

    Article  PubMed  Google Scholar 

  2. Nielsen, M., C.B. Barnes, and C.S. Ulrik. 2015. Clinical characteristics of the asthma-COPD overlap syndrome—a systematic review. International Journal of Chronic Obstructive Pulmonary Disease 10: 1443–1454.

    PubMed  PubMed Central  Google Scholar 

  3. Mims, J.W. 2015. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2–S6.

    Article  PubMed  Google Scholar 

  4. Janson, C. 2010. The importance of airway remodelling in the natural course of asthma. The Clinical Respiratory Journal 4 (Suppl 1): 28–34.

    Article  CAS  PubMed  Google Scholar 

  5. Masoli, M., et al. 2004. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59 (5): 469–478.

    Article  PubMed  Google Scholar 

  6. Al-Harbi, N.O., et al. 2015. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma. International Immunopharmacology 26 (1): 237–245.

    Article  CAS  PubMed  Google Scholar 

  7. Fatani, S.H. 2014. Biomarkers of oxidative stress in acute and chronic bronchial asthma. The Journal of Asthma 51 (6): 578–584.

    Article  CAS  PubMed  Google Scholar 

  8. Sahiner, U.M., et al. 2011. Oxidative stress in asthma. World Allergy Organization Journal 4 (10): 151–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Comhair, S.A., and S.C. Erzurum. 2010. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling 12 (1): 93–124.

    Article  CAS  Google Scholar 

  10. Abreu, S.C., et al. 2013. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respiratory Physiology & Neurobiology 185 (3): 615–624.

    Article  Google Scholar 

  11. Antunes, M.A., et al. 2009. Different strains of mice present distinct lung tissue mechanics and extracellular matrix composition in a model of chronic allergic asthma. Respiratory Physiology & Neurobiology 165 (2–3): 202–207.

    Article  CAS  Google Scholar 

  12. Antunes, M.A., et al. 2010. Sex-specific lung remodeling and inflammation changes in experimental allergic asthma. J Appl Physiol (1985) 109 (3): 855–863.

    Article  CAS  Google Scholar 

  13. Silva, P.L., et al. 2008. Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respiratory Physiology & Neurobiology 160 (3): 239–248.

    Article  CAS  Google Scholar 

  14. Xisto, D.G., et al. 2005. Lung parenchyma remodeling in a murine model of chronic allergic inflammation. American Journal of Respiratory and Critical Care Medicine 171 (8): 829–837.

    Article  PubMed  Google Scholar 

  15. Lee, C.C., et al. 2013. Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochemical Pharmacology 86 (7): 940–949.

    Article  CAS  PubMed  Google Scholar 

  16. Shim, E.J., et al. 2012. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clinical and Experimental Allergy 42 (6): 958–965.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Y., et al. 2012. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Human Immunology 73 (11): 1171–1174.

    Article  CAS  PubMed  Google Scholar 

  18. Lima, C., et al. 2002. Eosinophilic inflammation and airway hyper-responsiveness are profoundly inhibited by a helminth (Ascaris suum) extract in a murine model of asthma. Clinical and Experimental Allergy 32 (11): 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki, K., et al. 1983. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Analytical Biochemistry 132 (2): 345–352.

    Article  CAS  PubMed  Google Scholar 

  20. Bannister, J.V., and L. Calabrese. 1987. Assays for superoxide dismutase. Methods of Biochemical Analysis 32: 279–312.

    Article  CAS  PubMed  Google Scholar 

  21. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  22. Flohe, L., and W.A. Gunzler. 1984. Assays of glutathione peroxidase. Methods in Enzymology 105: 114–121.

    Article  CAS  PubMed  Google Scholar 

  23. Draper, H.H., and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology 186: 421–431.

    Article  CAS  PubMed  Google Scholar 

  24. Green, L.C., et al. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126 (1): 131–138.

    Article  CAS  PubMed  Google Scholar 

  25. Niu, R., et al. 2000. Quantitative analysis of matrix metalloproteinases-2 and -9, and their tissue inhibitors-1 and -2 in human placenta throughout gestation. Life Sciences 66 (12): 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  26. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (7): 671–675.

    Article  CAS  PubMed  Google Scholar 

  27. Bates, J.H., et al. 1988. Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol (1985) 65 (1): 408–414.

    CAS  Google Scholar 

  28. Douwes, J., et al. 2002. Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57 (7): 643–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monteseirin, J. 2009. Neutrophils and asthma. Journal of Investigational Allergology & Clinical Immunology 19 (5): 340–354.

    CAS  Google Scholar 

  30. Monteseirin, J., et al. 2001. IgE-dependent release of myeloperoxidase by neutrophils from allergic patients. Clinical and Experimental Allergy 31 (6): 889–892.

    Article  CAS  PubMed  Google Scholar 

  31. Jatakanon, A., et al. 1999. Neutrophilic inflammation in severe persistent asthma. American Journal of Respiratory and Critical Care Medicine 160 (5 Pt 1): 1532–1539.

    Article  CAS  PubMed  Google Scholar 

  32. Lugogo, N.L., et al. 2012. Alveolar macrophages from overweight/obese subjects with asthma demonstrate a proinflammatory phenotype. American Journal of Respiratory and Critical Care Medicine 186 (5): 404–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Molet, S., et al. 2005. Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflammation Research 54 (1): 31–36.

    Article  CAS  PubMed  Google Scholar 

  34. Donnelly, L.E., and P.J. Barnes. 2012. Defective phagocytosis in airways disease. Chest 141 (4): 1055–1062.

    Article  PubMed  Google Scholar 

  35. Marone, G., et al. 1997. Molecular and cellular biology of mast cells and basophils. International Archives of Allergy and Immunology 114 (3): 207–217.

    Article  CAS  PubMed  Google Scholar 

  36. Williams, C.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. The Journal of Experimental Medicine 192 (3): 455–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haraguchi, M., S. Shimura, and K. Shirato. 1999. Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. American Journal of Respiratory and Critical Care Medicine 159 (3): 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  38. Mayr, S.I., et al. 2002. IgE-dependent mast cell activation potentiates airway responses in murine asthma models. Journal of Immunology 169 (4): 2061–2068.

    Article  CAS  Google Scholar 

  39. KleinJan, A. 2016. Airway inflammation in asthma: key players beyond the Th2 pathway. Current Opinion in Pulmonary Medicine 22 (1): 46–52.

    Article  CAS  PubMed  Google Scholar 

  40. Macedo-Soares, M.F., et al. 2004. Lung eosinophilic inflammation and airway hyperreactivity are enhanced by murine anaphylactic, but not nonanaphylactic, IgG1 antibodies. The Journal of Allergy and Clinical Immunology 114 (1): 97–104.

    Article  CAS  PubMed  Google Scholar 

  41. Olsen, P.C., et al. 2011. Lidocaine-derivative JMF2-1 prevents ovalbumin-induced airway inflammation by regulating the function and survival of T cells. Clinical and Experimental Allergy 41 (2): 250–259.

    Article  CAS  PubMed  Google Scholar 

  42. Silva, P.M., et al. 2001. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme. British Journal of Pharmacology 134 (2): 283–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neves, J.S., et al. 2008. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proceedings of the National Academy of Sciences of the United States of America 105 (47): 18478–18483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neves, J.S., and P.F. Weller. 2009. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Current Opinion in Immunology 21 (6): 694–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perez, S.A., et al. 1993. Eosinophil granulocyte proliferation induced by an intermediate factor generated in the pleural cavity of rats injected with platelet-activating factor-acether. International Archives of Allergy and Immunology 102 (4): 368–374.

    Article  CAS  PubMed  Google Scholar 

  46. Andersson, U., and H. Erlandsson-Harris. 2004. HMGB1 is a potent trigger of arthritis. Journal of Internal Medicine 255 (3): 344–350.

    Article  CAS  PubMed  Google Scholar 

  47. Inoue, K., et al. 2007. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovascular Pathology 16 (3): 136–143.

    Article  CAS  PubMed  Google Scholar 

  48. Andersson, U., and K.J. Tracey. 2003. HMGB1 in sepsis. Scandinavian Journal of Infectious Diseases 35 (9): 577–584.

    Article  CAS  PubMed  Google Scholar 

  49. Li, W., et al. 2007. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PloS One 2 (11): e1153.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hou, C., et al. 2015. HMGB1 contributes to allergen-induced airway remodeling in a murine model of chronic asthma by modulating airway inflammation and activating lung fibroblasts. Cellular & Molecular Immunology 12 (4): 409–423.

    Article  CAS  Google Scholar 

  51. Ma, L., et al. 2015. High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 7 (10): 1732–1741.

    PubMed  PubMed Central  Google Scholar 

  52. Henricks, P.A., and F.P. Nijkamp. 2001. Reactive oxygen species as mediators in asthma. Pulmonary Pharmacology & Therapeutics 14 (6): 409–420.

    Article  CAS  Google Scholar 

  53. Zuo, L., et al. 2013. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Molecular Immunology 56 (1–2): 57–63.

    Article  CAS  PubMed  Google Scholar 

  54. Ma, Y., et al. 2016. Morin attenuates ovalbumin-induced airway inflammation by modulating oxidative stress-responsive MAPK signaling. Oxidative Medicine and Cellular Longevity 2016: 5843672.

    PubMed  Google Scholar 

  55. Nadeem, A., et al. 2003. Increased oxidative stress and altered levels of antioxidants in asthma. The Journal of Allergy and Clinical Immunology 111 (1): 72–78.

    Article  CAS  PubMed  Google Scholar 

  56. Rahman, I., et al. 1996. Systemic oxidative stress in asthma, COPD, and smokers. American Journal of Respiratory and Critical Care Medicine 154 (4 Pt 1): 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  57. Smith, L.J., et al. 1997. Reduced superoxide dismutase in lung cells of patients with asthma. Free Radical Biology & Medicine 22 (7): 1301–1307.

    Article  CAS  Google Scholar 

  58. Comhair, S.A., et al. 2005. Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. The American Journal of Pathology 166 (3): 663–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahmad, A., M. Shameem, and Q. Husain. 2012. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med 7 (4): 226–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacobson, G.A., K.C. Yee, and C.H. Ng. 2007. Elevated plasma glutathione peroxidase concentration in acute severe asthma: comparison with plasma glutathione peroxidase activity, selenium and malondialdehyde. Scandinavian Journal of Clinical and Laboratory Investigation 67 (4): 423–430.

    Article  CAS  PubMed  Google Scholar 

  61. Ganas, K., et al. 2001. Total nitrite/nitrate in expired breath condensate of patients with asthma. Respiratory Medicine 95 (8): 649–654.

    Article  CAS  PubMed  Google Scholar 

  62. Nadif, R., et al. 2014. Exhaled nitric oxide, nitrite/nitrate levels, allergy, rhinitis and asthma in the EGEA study. The European Respiratory Journal 44 (2): 351–360.

    Article  CAS  PubMed  Google Scholar 

  63. Rihak, V., et al. 2010. Nitrite in exhaled breath condensate as a marker of nitrossative stress in the airways of patients with asthma, COPD, and idiopathic pulmonary fibrosis. Journal of Clinical Laboratory Analysis 24 (5): 317–322.

    Article  CAS  PubMed  Google Scholar 

  64. Payne, D.N., et al. 2001. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. American Journal of Respiratory and Critical Care Medicine 164 (8 Pt 1): 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  65. Malinovschi, A., et al. 2016. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity. The Journal of Allergy and Clinical Immunology 138 (5): 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe, T., et al. 2011. Increased levels of HMGB-1 and endogenous secretory RAGE in induced sputum from asthmatic patients. Respiratory Medicine 105 (4): 519–525.

    Article  PubMed  Google Scholar 

  67. Jeffery, P.K. 2001. Remodeling in asthma and chronic obstructive lung disease. American Journal of Respiratory and Critical Care Medicine 164 (10 Pt 2): S28–S38.

    Article  CAS  PubMed  Google Scholar 

  68. Kumagai, K., et al. 1999. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. Journal of Immunology 162 (7): 4212–4219.

    CAS  Google Scholar 

  69. Matsuse, T., et al. 1991. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. The American Review of Respiratory Disease 144 (2): 368–372.

    Article  CAS  PubMed  Google Scholar 

  70. Prikk, K., et al. 2002. Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Laboratory Investigation 82 (11): 1535–1545.

    Article  CAS  PubMed  Google Scholar 

  71. Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cellular and Molecular Biology (Noisy-le-Grand, France) 52 (4): 8–16.

    CAS  Google Scholar 

  72. Trifilieff, A., et al. 2002. Pharmacological profile of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in models of airway inflammation. British Journal of Pharmacology 135 (7): 1655–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gordon, J.R., et al. 2005. CD8 alpha+, but not CD8 alpha-, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. Journal of Immunology 175 (3): 1516–1522.

    Article  CAS  Google Scholar 

  74. Ferguson, A.C., M. Whitelaw, and H. Brown. 1992. Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma. The Journal of Allergy and Clinical Immunology 90 (4 Pt 1): 609–613.

    Article  CAS  PubMed  Google Scholar 

  75. Ok, I.S., et al. 2009. Pinellia ternata, Citrus reticulata, and their combinational prescription inhibit eosinophil infiltration and airway hyperresponsiveness by suppressing CCR3+ and Th2 cytokines production in the ovalbumin-induced asthma model. Mediators of Inflammation 2009: 413270.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Iwashita, H., et al. 2006. Role of eosinophil chemotactic factor by T lymphocytes on airway hyperresponsiveness in a murine model of allergic asthma. American Journal of Respiratory Cell and Molecular Biology 35 (1): 103–109.

    Article  CAS  PubMed  Google Scholar 

  77. Martin, L.B., et al. 1996. Eosinophils in allergy: role in disease, degranulation, and cytokines. International Archives of Allergy and Immunology 109 (3): 207–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Tiscoski Nesi.

Ethics declarations

All procedures were done in accordance with international guidelines (NIH) and Brazilian law (the “Arouca” Law) for the use of laboratory animals (Law 11,794 from 10/08/2008), and this study received prior approval from the animal ethics committee of the Federal University of Rio de Janeiro (IBCCF 106)

Additional information

Renata Tiscoski Nesi and Emanuel Kennedy-Feitosa contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesi, R.T., Kennedy-Feitosa, E., Lanzetti, M. et al. Inflammatory and Oxidative Stress Markers in Experimental Allergic Asthma. Inflammation 40, 1166–1176 (2017). https://doi.org/10.1007/s10753-017-0560-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0560-2

KEY WORDS

Navigation