Skip to main content
Log in

Chrysin Attenuates IL-1β-Induced Expression of Inflammatory Mediators by Suppressing NF-κB in Human Osteoarthritis Chondrocytes

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Chrysin, a natural flavonoid extracted from honey and propolis, has been reported to have anti-inflammatory effects. However, the anti-inflammatory effects of chrysin on OA have not been reported. This study aimed to assess the effects of chrysin on human OA chondrocytes. Human OA chondrocytes were pretreated with chrysin (1, 5, 10 μM) for 2 h and subsequently stimulated with IL-1β for 24 h. Production of NO, PGE2, MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5 was evaluated by the Griess reaction and ELISAs. The messenger RNA (mRNA) expression of COX-2, iNOS, MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, aggrecan, and collagen-II was measured by real-time PCR. The protein expression of COX-2, iNOS, p65, p-p65, IκB-α, and p-IκB-α was detected by Western blot. The protein expression of collagen-II and p65 nuclear translocation was evaluated by immunofluorescence. We found that chrysin significantly inhibited the IL-1β-induced production of NO and PGE2; expression of COX-2, iNOS, MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5; and degradation of aggrecan and collagen-II. Furthermore, chrysin dramatically blocked IL-1β-stimulated IκB-α degradation and NF-κB activation. Taken together, these results suggest that chrysin may be a potential agent in the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Malemud, C.J., N. Islam, and T.M. Haqqi. 2003. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies. Cells, Tissues, Organs 174: 34–48.

    Article  PubMed  Google Scholar 

  2. Aicher, W.K., and B. Rolauffs. 2014. The spatial organisation of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis. Annals of the Rheumatic Diseases 73: 645–653.

    Article  PubMed  Google Scholar 

  3. Thysen, S., F.P. Luyten, and R.J. Lories. 2015. Targets, models and challenges in osteoarthritis research. Disease Models & Mechanisms 8: 17–30.

    Article  CAS  Google Scholar 

  4. Johnson, V.L., and D.J. Hunter. 2014. The epidemiology of osteoarthritis. Best Practice & Research. Clinical Rheumatology 28: 5–15.

    Article  Google Scholar 

  5. Bonnet, C.S., and D.A. Walsh. 2005. Osteoarthritis, angiogenesis and inflammation. Rheumatology 44: 7–16.

    Article  CAS  PubMed  Google Scholar 

  6. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews. Rheumatology 7: 33–42.

    Article  CAS  PubMed  Google Scholar 

  7. Santangelo, K.S., G.J. Nuovo, and A.L. Bertone. 2012. In vivo reduction or blockade of interleukin-1beta in primary osteoarthritis influences expression of mediators implicated in pathogenesis. Osteoarthritis and Cartilage 20: 1610–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldring, M.B., K. Fukuo, J.R. Birkhead, E. Dudek, and L.J. Sandell. 1994. Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes. Journal of Cellular Biochemistry 54: 85–99.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, W., H. Zhang, Y. Jin, Q. Wang, L. Chen, Z. Feng, et al. 2017. Butein inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. International Immunopharmacology 42: 1–10.

    Article  CAS  PubMed  Google Scholar 

  10. Xue, M., K. McKelvey, K. Shen, N. Minhas, L. March, S.Y. Park, et al. 2014. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 53: 2270–2279.

    Article  PubMed  Google Scholar 

  11. Kelwick, R., I. Desanlis, G.N. Wheeler, and D.R. Edwards. 2015. The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biology 16: 113.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chabane, N., N. Zayed, H. Afif, L. Mfuna-Endam, M. Benderdour, C. Boileau, et al. 2008. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis and Cartilage 16: 1267–1274.

    Article  CAS  PubMed  Google Scholar 

  13. Goldring, S.R. and M. B. Goldring. 2004. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clinical Orthopaedics and Related Research S27–36.

  14. Ha, S.K., E. Moon, and S.Y. Kim. 2010. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-kappaB and JNK activations in microglia cells. Neuroscience Letters 485: 143–147.

    Article  CAS  PubMed  Google Scholar 

  15. Habtemariam, S. 1997. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells. Journal of Natural Products 60: 775–778.

    Article  CAS  PubMed  Google Scholar 

  16. Lapidot, T., M.D. Walker, and J. Kanner. 2002. Antioxidant and prooxidant effects of phenolics on pancreatic beta-cells in vitro. Journal of Agricultural and Food Chemistry 50: 7220–7225.

    Article  CAS  PubMed  Google Scholar 

  17. Yano, S., D. Umeda, T. Yamashita, Y. Ninomiya, M. Sumida, Y. Fujimura, et al. 2007. Dietary flavones suppresses IgE and Th2 cytokines in OVA-immunized BALB/c mice. European Journal of Nutrition 46: 257–263.

    Article  CAS  PubMed  Google Scholar 

  18. Bae, Y., S. Lee, and S.H. Kim. 2011. Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-kappaB. Toxicology and Applied Pharmacology 254: 56–64.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, Y., F.L. Gong, G.B. Zhao, and J. Li. 2014. Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. International Journal of Molecular Sciences 15: 12270–12279.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dou, W., J. Zhang, E. Zhang, A. Sun, L. Ding, G. Chou, et al. 2013. Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-kappaB signaling pathway. The Journal of Pharmacology and Experimental Therapeutics 345: 473–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palmieri, B., D. Lodi, and S. Capone. 2010. Osteoarthritis and degenerative joint disease: local treatment options update. Acta bio-medica: Atenei Parmensis 81: 94–100.

    CAS  Google Scholar 

  22. Au, R.Y., T.K. Al-Talib, A.Y. Au, P.V. Phan, and C.G. Frondoza. 2007. Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthritis and Cartilage 15: 1249–1255.

    Article  CAS  PubMed  Google Scholar 

  23. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salvemini, D., T.P. Misko, J.L. Masferrer, K. Seibert, M.G. Currie, and P. Needleman. 1993. Nitric oxide activates cyclooxygenase enzymes. Proceedings of the National Academy of Sciences of the United States of America 90: 7240–7244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sasaki, K., T. Hattori, T. Fujisawa, K. Takahashi, H. Inoue, and M. Takigawa. 1998. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. Journal of Biochemistry 123: 431–439.

    Article  CAS  PubMed  Google Scholar 

  26. Martel-Pelletier, J., J.P. Pelletier, and H. Fahmi. 2003. Cyclooxygenase-2 and prostaglandins in articular tissues. Seminars in Arthritis and Rheumatism 33: 155–167.

    Article  CAS  PubMed  Google Scholar 

  27. Li, N., M.A. Rivera-Bermudez, M. Zhang, J. Tejada, S.S. Glasson, L.A. Collins-Racie, et al. 2010. LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proceedings of the National Academy of Sciences of the United States of America 107: 3734–3739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, W., Z. Feng, S. You, H. Zhang, Z. Tao, Q. Wang, et al. 2017. Fisetin inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. International Immunopharmacology 45: 135–147.

    Article  CAS  PubMed  Google Scholar 

  29. Klein, T., and R. Bischoff. 2011. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41: 271–290.

    Article  CAS  PubMed  Google Scholar 

  30. Brinckerhoff, C.E., and L.M. Matrisian. 2002. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology 3: 207–214.

    Article  CAS  PubMed  Google Scholar 

  31. Tetlow, L.C., D.J. Adlam, and D.E. Woolley. 2001. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis and Rheumatism 44: 585–594.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshihara, Y., H. Nakamura, K. Obata, H. Yamada, T. Hayakawa, K. Fujikawa, et al. 2000. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Annals of the Rheumatic Diseases 59: 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Majumdar, M.K., R. Askew, S. Schelling, N. Stedman, T. Blanchet, B. Hopkins, et al. 2007. Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis and Rheumatism 56: 3670–3674.

    Article  CAS  PubMed  Google Scholar 

  34. Song, R.H., M.D. Tortorella, A.M. Malfait, J.T. Alston, Z. Yang, E.C. Arner, et al. 2007. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis and Rheumatism 56: 575–585.

    Article  CAS  PubMed  Google Scholar 

  35. Cooper, C., S. Snow, T.E. McAlindon, S. Kellingray, B. Stuart, D. Coggon, et al. 2000. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis and Rheumatism 43: 995–1000.

    Article  CAS  PubMed  Google Scholar 

  36. Marcu, K.B., M. Otero, E. Olivotto, R.M. Borzi, and M.B. Goldring. 2010. NF-kappaB signaling: multiple angles to target OA. Current Drug Targets 11: 599–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rigoglou, S., and A.G. Papavassiliou. 2013. The NF-kappaB signalling pathway in osteoarthritis. The International Journal of Biochemistry & Cell Biology 45: 2580–2584.

    Article  CAS  Google Scholar 

  38. Roman-Blas, J.A., and S.A. Jimenez. 2006. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage 14: 839–848.

    Article  CAS  PubMed  Google Scholar 

  39. Lianxu, C., J. Hongti, and Y. Changlong. 2006. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthritis and Cartilage 14: 367–376.

    Article  CAS  PubMed  Google Scholar 

  40. Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix biology: journal of the International Society for Matrix Biology 21: 251–262.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the staff in the Laboratory of Orthopedic Research Institute and Scientific Research Center of Second Affiliated Hospital of Wenzhou Medical University. This work was supported by grants from the National Natural Science Foundation of China (81402980), Zhejiang Province Medical and Health Technology Project (2017KY480), and Wenzhou Science and Technology Bureau (Y20160040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Ethics declarations

The study was in accordance with the Declaration of Helsinki and Tokyo.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Tao, Z., Cai, L. et al. Chrysin Attenuates IL-1β-Induced Expression of Inflammatory Mediators by Suppressing NF-κB in Human Osteoarthritis Chondrocytes. Inflammation 40, 1143–1154 (2017). https://doi.org/10.1007/s10753-017-0558-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0558-9

Key Words

Navigation