Advertisement

Inflammation

, Volume 40, Issue 3, pp 1051–1061 | Cite as

A Naphthoquinone from Sinningia canescens Inhibits Inflammation and Fever in Mice

  • Luís A. Lomba
  • Paulo H. Vogt
  • Victor E. P. Souza
  • Mariane C. G. Leite-Avalca
  • Maria H. Verdan
  • Maria Elida A. Stefanello
  • Aleksander R. Zampronio
ORIGINAL ARTICLE

Abstract

We previously showed that plants from the genus Sinningia are a source of antiinflammatory and analgesic compounds with different mechanisms of action. The present study evaluated the antiinflammatory, antinociceptive, and antipyretic effects of a crude extract (CE) from Sinningia canescens, its fractions, and 6-methoxy-7-hydroxy-α-dunnione (MHD) in mice. These effects were evaluated using carrageenan (Cg)-induced paw edema, acetic acid- and formalin-induced nociception, mechanical hyperalgesia, lipopolysaccharide (LPS)-induced fever, and plasma cytokine levels. The CE and dichloromethane and hexane fractions reduced Cg-induced paw edema and hyperalgesia, LPS-induced fever, and plasma tumor necrosis factor-α (TNF-α) levels. The CE also reduced acetic acid-induced writhing and the second phase of formalin-induced nociception but did not alter thermal nociception or motor performance. Partition with solvents showed that the antiinflammatory, antihyperalgesic, and antipyretic activities were present in dichoromethane and hexane fractions, and the major compound isolated from these fractions was MHD. Oral and intraplantar MHD administration reduced paw edema. Oral MHD administration also reduced prostaglandin E2-induced hyperalgesia but did not alter hyperalgesia that was induced by dopamine and dibutyryl cyclic adenosine monophosphate. Treatment with glibenclamide, a KATP channel blocker, did not alter the analgesic effect of MHD. Lipopolysaccharide-induced fever and TNF-α, interleukin-1β, and interleukin-6 levels were inhibited by MHD. Altogether, these data suggest that the CE has antiinflammatory, analgesic, and antipyretic activity, and these actions are at least partially related to MHD. These results also suggest that MHD acts by blocking cytokine synthesis and/or blocking prostaglandin activity.

KEY WORDS

Sinningia canescens Gesneriaceae inflammation naphthoquinone 6-methoxi-7-hidroxy-α-dunnione 

Notes

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 304668/2011-7 and 473873/2011-7). Lomba, L.A. is the recipient of a scholarship from Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were conducted.

Supplementary material

10753_2017_548_MOESM1_ESM.pdf (96 kb)
Fig. S1. Effect of dichloromethane and hexane fractions of S. canescens on carrageenan (Cg)-induced paw edema, mechanical hyperalgesia, and lipopolysaccharide-induced fever. (a-d) Mice were treated with the dichloromethane fraction (DCM; 2.5 mg/kg), hexane fraction (HEX; 2.0 mg/kg), indomethacin (IND; 5 mg/kg), or vehicle (V) orally or dexamethasone (DEX; 1 mg/kg) subcutaneously. One hour after oral treatment or 30 min after subcutaneous treatment, the animals received Cg (300 μg/paw). Edema formation was evaluated for up to 4 h after the Cg injection (a, b), and the mechanical threshold was evaluated before any injection (BASAL) and 3 h after the Cg injection (c, d). (e, f) Animals were treated with the same doses of the fractions and IND orally and after 30 min received LPS (100 μg/kg, i.p.). Body temperature was measured up to 6 h after the LPS injection. The data are expressed as the mean ± SEM change in paw thickness (in micrometers) (a, b), mechanical threshold (in milligrams) (c, d), or body temperature (°C) (e, f) (n = 6-14). The data were analyzed using two-way ANOVA (a, b, e, f) or one-way ANOVA (c, d) followed by Bonferroni’s post hoc test. Symbols denote significant differences compared with the basal threshold, V/V-treated group (### p < 0.001), or V/CG- or V/LPS-treated group (*p < 0.05, **p < 0.01) (PDF 95 kb)
10753_2017_548_MOESM2_ESM.pdf (87 kb)
Fig. S2. Fingerprint analysis of the DCM and HEX fractions obtained from the tubers of S. canescens. Figure shows the presence of MHD (1) identified by HPLC in HEX and DCM fractions. MHD was observed in both fractions at 54.1 min (PDF 87 kb)

References

  1. 1.
    Aley, K.O., and J.D. Levine. 1999. Role of protein kinase A in the maintenance of inflammatory pain. The Journal of Neuroscience 19 (6): 2181–2186.PubMedGoogle Scholar
  2. 2.
    Alves, D., and I. Duarte. 2002. Involvement of ATP-sensitive K(+) channels in the peripheral antinociceptive effect induced by dipyrone. European Journal of Pharmacology 444 (1–2): 47–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Barbosa, F.L., L.S. Mori, D. Riva, M.E. Stefanello, and A.R. Zampronio. 2013. Antinociceptive and anti-inflammatory activities of the ethanolic extract, fractions and 8-methoxylapachenol from Sinningia allagophylla tubers. Basic & Clinical Pharmacology & Toxicology 113 (1): 1–7. doi: 10.1111/bcpt.12051.CrossRefGoogle Scholar
  4. 4.
    Bastos-Pereira, A.L., D. Fraga, D. Ott, B. Simm, J. Murgott, J. Roth, and A.R. Zampronio. 2014. Involvement of brain cytokines in zymosan-induced febrile response. J Appl Physiol (1985) 116 (9): 1220–1229. doi: 10.1152/japplphysiol.01278.2013.CrossRefGoogle Scholar
  5. 5.
    Chaplan, S.R., F.W. Bach, J.W. Pogrel, J.M. Chung, and T.L. Yaksh. 1994. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 53 (1): 55–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Checker, R., D. Sharma, S.K. Sandur, S. Khanam, and T.B. Poduval. 2009. Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. International Immunopharmacology 9 (7–8): 949–958. doi: 10.1016/j.intimp.2009.03.022.CrossRefPubMedGoogle Scholar
  7. 7.
    Choi, B.T., J. Cheong, and Y.H. Choi. 2003. beta-Lapachone-induced apoptosis is associated with activation of caspase-3 and inactivation of NF-kappaB in human colon cancer HCT-116 cells. Anti-Cancer Drugs 14 (10): 845–850.CrossRefPubMedGoogle Scholar
  8. 8.
    Cunha, T.M., W.A. Verri Jr., J.S. Silva, S. Poole, F.Q. Cunha, and S.H. Ferreira. 2005. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proceedings of the National Academy of Sciences of the United States of America 102: 1755–1760.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    DiMartino, M. J., Campbell, G. K. Jr., Wolff C. E, Hanna, N. 1987. The pharmacology of arachidonic acid-induced rat paw edema. (0065-4299).Google Scholar
  10. 10.
    Dina, O.A., T. Hucho, J. Yeh, M. Malik-Hall, D.B. Reichling, and J.D. Levine. 2005. Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia. Pain 115 (1–2): 191–203.CrossRefPubMedGoogle Scholar
  11. 11.
    Dina, O.A., C.A. Parada, J. Yeh, X.J. Chen, G.C. McCarter, and J.D. Levine. 2004. Integrin signaling in inflammatory and neuropathic pain in the rat. European Journal of Neuroscience 19 (3): 634–642. doi: 10.1111/j.1460-9568.2004.03169.CrossRefPubMedGoogle Scholar
  12. 12.
    Dinarello, C.A. 2010. Anti-inflammatory Agents: Present and Future. Cell 140 (6): 935–950. doi: 10.1016/j.cell.2010.02.043.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dixon, W.J. 1980. Efficient analysis of experimental observations. Annual Review of Pharmacology and Toxicology 20: 441–462. doi: 10.1146/annurev.pa.20.040180.002301.CrossRefPubMedGoogle Scholar
  14. 14.
    Dormond, O., M. Bezzi, A. Mariotti, and C. Ruegg. 2002. Prostaglandin E-2 promotes integrin alpha(V)beta(3)-dependent endothelial cell adhesion, Rac-activation, and spreading through cAMP/PKA-dependent signaling. The Journal of Biological Chemistry 277 (48): 45838–45846. doi: 10.1074/jbc.M209213200.CrossRefPubMedGoogle Scholar
  15. 15.
    Engstrom, L., J. Ruud, A. Eskilsson, A. Larsson, L. Mackerlova, U. Kugelberg, H. Qian, et al. 2012. Lipopolysaccharide-induced fever depends on prostaglandin E2 production specifically in brain endothelial cells. Endocrinology 153 (10): 4849–4861.CrossRefPubMedGoogle Scholar
  16. 16.
    Hunskaar, S., and K. Hole. 1987. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30 (1): 103–114.CrossRefPubMedGoogle Scholar
  17. 17.
    Kassuya, C.A., A. Cremoneze, L.F. Barros, A.S. Simas, R. Lapa Fda, R. Mello-Silva, M.E. Stefanello, and A.R. Zampronio. 2009. Antipyretic and anti-inflammatory properties of the ethanolic extract, dichloromethane fraction and costunolide from Magnolia ovata (Magnoliaceae). Journal of Ethnopharmacology 124 (3): 369–376.CrossRefPubMedGoogle Scholar
  18. 18.
    Koster, R, M Anderson, and EJ De Beer. 1959. Acetic acid-induced analgesic screening: Fed Proc.Google Scholar
  19. 19.
    Ley, K. 1996. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovascular Research 32 (4): 733–742.CrossRefPubMedGoogle Scholar
  20. 20.
    Luheshi, G.N., A. Stefferl, A.V. Turnbull, M.J. Dascombe, S. Brouwer, S.J. Hopkins, and N.J. Rothwell. 1997. Febrile response to tissue inflammation involves both peripheral and brain IL-1 and TNF-alpha in the rat. The American Journal of Physiology 272 (3 Pt 2): R862–R868.PubMedGoogle Scholar
  21. 21.
    Meyer, Christian J., Francis J. Alenghat, Paul Rim, Jenny Hwai-Jen Fong, Ben Fabry, and Donald E. Ingber. 2000. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nature Cell Biology 2 (9): 666–668.CrossRefPubMedGoogle Scholar
  22. 22.
    Moller, B., and P.M. Villiger. 2006. Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer Seminars in Immunopathology 27 (4): 391–408.CrossRefPubMedGoogle Scholar
  23. 23.
    Parmentier, J.H., M.M. Muthalif, A.E. Saeed, and K.U. Malik. 2001. Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase a2. tyrosine phosphorylation of phospholipase d2 in response to norepinephrine. The Journal of Biological Chemistry 276 (19): 15704–15711. doi: 10.1074/jbc.M011473200.CrossRefPubMedGoogle Scholar
  24. 24.
    Rhen, T., and J.A. Cidlowski. 2005. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. The New England Journal of Medicine 353 (16): 1711–1723.CrossRefPubMedGoogle Scholar
  25. 25.
    Rudaya, A.Y., A.A. Steiner, J.R. Robbins, A.S. Dragic, and A.A. Romanovsky. 2005. Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 289 (5): R1244–R1252.CrossRefPubMedGoogle Scholar
  26. 26.
    Sachs, D., C. Villarreal, F. Cunha, C. Parada, and Sh. Ferreira. 2009. The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. British Journal of Pharmacology 156 (5): 826–834. doi: 10.1111/j.1476-5381.2008.00093.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Scott, P.A., G.H. Kingsley, C.M. Smith, E.H. Choy, and D.L. Scott. 2007. Non-steroidal anti-inflammatory drugs and myocardial infarctions: comparative systematic review of evidence from observational studies and randomised controlled trials. Annals of the Rheumatic Diseases 66 (10): 1296–1304. doi: 10.1136/ard.2006.068650.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Souza, G.V., A.S. Simas, A.L. Bastos-Pereira, G.R. Frois, J.L. Ribas, M.H. Verdan, C.A. Kassuya, M.E. Stefanello, and A.R. Zampronio. 2015. Antinociceptive activity of the ethanolic extract, fractions, and aggregatin D isolated from Sinningia aggregata tubers. PloS One 10 (2): e0117501. doi: 10.1371/journal.pone.0117501.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Steiner, A.A., A.I. Ivanov, J. Serrats, H. Hosokawa, A.N. Phayre, J.R. Robbins, J.L. Roberts, et al. 2006. Cellular and molecular bases of the initiation of fever. PLoS Biology 4 (9): e284.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tanaka, S., S. Nishiumi, M. Nishida, Y. Mizushina, K. Kobayashi, A. Masuda, T. Fujita, et al. 2010. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation. Clinical and Experimental Immunology 160 (2): 283–292. doi: 10.1111/j.1365-2249.2009.04083.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Verdan, M.H., C.A. Ehrenfried, D.R. Scharf, A.C. Cervi, M.J. Salvadore, A. Barison, and E.A. Stefanello. 2014. Chemical Constituents from Sinningia canescens and S. warmingii. Natural Product Communications 9 (10): 1535–1537.PubMedGoogle Scholar
  32. 32.
    Verdan, M.H., and M.E.A. Stefanello. 2012. Secondary Metabolites and Biological Properties of Gesneriaceae Species. Chemistry & Biodiversity 9 (12): 2701–2731. doi: 10.1002/cbdv.201100246.CrossRefGoogle Scholar
  33. 33.
    Villarreal, C.F., M.I. Funez, F. Figueiredo, F.Q. Cunha, C.A. Parada, and S.H. Ferreira. 2009. Acute and persistent nociceptive paw sensitisation in mice: the involvement of distinct signalling pathways. Life Sciences 85 (23–26): 822–829. doi: 10.1016/j.lfs.2009.10.018.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu, Y., X. Xu, X. Gao, H. Chen, and L. Geng. 2014. Shikonin suppresses IL-17-induced VEGF expression via blockage of JAK2/STAT3 pathway. International Immunopharmacology 19 (2): 327–333.CrossRefPubMedGoogle Scholar
  35. 35.
    Zampronio, A.R., D.M. Soares, and G.E. Souza. 2015. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2 (4): 506–521. doi: 10.1080/23328940.2015.1102802.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Luís A. Lomba
    • 1
  • Paulo H. Vogt
    • 1
  • Victor E. P. Souza
    • 1
  • Mariane C. G. Leite-Avalca
    • 1
  • Maria H. Verdan
    • 2
  • Maria Elida A. Stefanello
    • 2
  • Aleksander R. Zampronio
    • 1
  1. 1.Department of Pharmacology, Biological Sciences SectionFederal University of Paraná, Centro PolitécnicoCuritibaBrazil
  2. 2.Department of ChemistryFederal University of Paraná, Centro PolitécnicoCuritibaBrazil

Personalised recommendations