, Volume 40, Issue 3, pp 778–787 | Cite as

BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats

  • Wei Zhang
  • Zeyou Qi
  • Yaping WangEmail author


Lung ischemia-reperfusion (I/R) injury is a critical complication following a lung transplant, cardiopulmonary bypass, pulmonary embolism, and trauma. Immune cells and their effector functions are involved in the lung I/R injury. Store-operated calcium channels (SOCC) are highly Ca2+-selective cation channels and have crucial effects on the immune system. It has been indicated that BTP2, a potent SOCC blocker, could inhibit pro-inflammatory cytokine production from immune cells both in vitro and in vivo. Therefore, this study was conducted to investigate the beneficial effects of BTP2 on lung I/R injury in Sprague-Dawley (SD) rats. The left lungs of male SD rats underwent ischemia for 60 min and reperfusion for 2 h. Treated animals received BTP2 4 mg/kg or 10 mg/kg intraperitoneally 30 min before the ischemia. The results revealed that pretreatment with BTP2 markedly attenuated I/R injury-induced pulmonary edema, microvascular protein leakage, neutrophil infiltration, adhesion molecules, cytokine production (e.g., ICAM-1, TNF-α, IL-1β, and IL-2), and the transcription factor nuclear factor of activated T cells c1 nuclear translocation in the lung tissue. These findings indicate that BTP2 can be a potential therapeutic drug for lung I/R injury and suggest that SOCC may play a critical role in lung I/R injury.


lung ischemia-reperfusion injury store-operated calcium channels BTP2 inflammation 


Compliance with Ethical Standards


This study was supported by the National Natural Science Foundation of China (81671962).

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    de Perrot, M., M.Y. Liu, T.K. Waddell, and S. Keshavjee. 2003. Ischemia-reperfusion-induced lung injury. American Journal of Respiratory and Critical Care Medicine 167: 490–511.CrossRefPubMedGoogle Scholar
  2. 2.
    Apostolakis, E., K.S. Filos, E. Koletsis, and D. Dougenis. 2010. Lung dysfunction following cardiopulmonary bypass. Journal of Cardiac Surgery 25: 47–55.CrossRefPubMedGoogle Scholar
  3. 3.
    den Hengst, W.A., J.F. Gielis, J.Y. Lin, P.E. Van Schil, L.J. De Windt, and A.L. Moens. 2010. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. American Journal of Physiology. Heart and Circulatory Physiology 299: H1283–H1299.CrossRefGoogle Scholar
  4. 4.
    Krishnadasan, B., B. Naidu, M. Rosengart, A.L. Farr, A. Barnes, E.D. Verrier, and M.S. Mulligan. 2002. Decreased lung ischemia-reperfusion injury in rats after preoperative administration of cyclosporine and tacrolimus. The Journal of Thoracic and Cardiovascular Surgery 123: 756–767.CrossRefPubMedGoogle Scholar
  5. 5.
    Linfert, D., T. Chowdhry, and H. Rabb. 2009. Lymphocytes and ischemia-reperfusion injury. Transplantation Reviews (Orlando, Fla.) 23: 1–10.CrossRefGoogle Scholar
  6. 6.
    Yang, Z., A.K. Sharma, J. Linden, I.L. Kron, and V.E. Laubach. 2009. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery 137: 695–702. discussion 702.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kalogeris, T., C.P. Baines, M. Krenz, and R.J. Korthuis. 2012. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology 298: 229–317.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Swoboda, L., D.E. Clancy, M.A. Donnebrink, and C.M. Rieder-Nelissen. 1993. The influence of verapamil on lung preservation. A study on rabbit lungs with a reperfusion model allowing physiological loading. The Thoracic and Cardiovascular Surgeon 41: 85–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Yokomise, H., T. Ueno, F. Yamazaki, S. Keshavjee, A. Slutsky, and G. Patterson. 1990. The effect and optimal time of administration of verapamil on lung preservation. Transplantation 49: 1039–1043.CrossRefPubMedGoogle Scholar
  10. 10.
    Karck, M., and A. Haverich. 1992. Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Research in Experimental Medicine (Berl) 192: 137–144.CrossRefGoogle Scholar
  11. 11.
    Soboloff, J., M.A. Spassova, X.D. Tang, T. Hewavitharana, W. Xu, and D.L. Gill. 2006. Orai1 and STIM reconstitute store-operated calcium channel function. Journal Of Biological Chemistry 281: 20661–20665.CrossRefPubMedGoogle Scholar
  12. 12.
    Perni, S., J. L. Dynes, A. V. Yeromin, M. D. Cahalan, and C. Franzini-Armstrong. 2015. Nanoscale patterning of STIM1 and Orai1 during store-operated Ca2+ entry. Proc Natl Acad Sci U S A.Google Scholar
  13. 13.
    Shaw, P.J., B. Qu, M. Hoth, and S. Feske. 2013. Molecular regulation of CRAC channels and their role in lymphocyte function. Cellular and Molecular Life Sciences 70: 2637–2656.CrossRefPubMedGoogle Scholar
  14. 14.
    Parekh, A.B. 2010. Store-operated CRAC channels: function in health and disease. Nature Reviews. Drug Discovery 9: 399–410.CrossRefPubMedGoogle Scholar
  15. 15.
    Shaw, P.J., and S. Feske. 2012. Physiological and pathophysiological functions of SOCE in the immune system. Frontiers in Bioscience (Elite Edition) 4: 2253–2268.CrossRefGoogle Scholar
  16. 16.
    Di Sabatino, A., L. Rovedatti, R. Kaur, J.P. Spencer, J.T. Brown, V.D. Morisset, P. Biancheri, et al. 2009. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. Journal of Immunology 183: 3454–3462.CrossRefGoogle Scholar
  17. 17.
    Wen, L., S. Voronina, M.A. Javed, M. Awais, P. Szatmary, D. Latawiec, M. Chvanov, et al. 2015. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149: 481–492 e487.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ma, J., C.A. McCarl, S. Khalil, K. Luthy, and S. Feske. 2010. T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. European Journal of Immunology 40: 3028–3042.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Braun, A., D. Varga-Szabo, C. Kleinschnitz, I. Pleines, M. Bender, M. Austinat, M. Bosl, G. Stoll, and B. Nieswandt. 2009. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113: 2056–2063.CrossRefPubMedGoogle Scholar
  20. 20.
    Gao, X.H., R. Gao, Y.Z. Tian, P. McGonigle, J.E. Barrett, Y. Dai, and H. Hu. 2015. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. British Journal of Pharmacology 172: 2991–3002.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ishikawa, J., K. Ohga, T. Yoshino, R. Takezawa, A. Ichikawa, H. Kubota, and T. Yamada. 2003. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. Journal of Immunology 170: 4441–4449.CrossRefGoogle Scholar
  22. 22.
    Zitt, C., B. Strauss, E.C. Schwarz, N. Spaeth, G. Rast, A. Hatzelmann, and M. Hoth. 2004. Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. The Journal of Biological Chemistry 279: 12427–12437.CrossRefPubMedGoogle Scholar
  23. 23.
    Steinckwich, N., J.P. Frippiat, M.J. Stasia, M. Erard, R. Boxio, C. Tankosic, I. Doignon, and O. Nusse. 2007. Potent inhibition of store-operated Ca2+ influx and superoxide production in HL60 cells and polymorphonuclear neutrophils by the pyrazole derivative BTP2. Journal of Leukocyte Biology 81: 1054–1064.CrossRefPubMedGoogle Scholar
  24. 24.
    Ohga, K., R. Takezawa, T. Yoshino, T. Yamada, Y. Shimizu, and J. Ishikawa. 2008. The suppressive effects of YM-58483/BTP-2, a store-operated Ca2+ entry blocker, on inflammatory mediator release in vitro and airway responses in vivo. Pulmonary Pharmacology & Therapeutics 21: 360–369.CrossRefGoogle Scholar
  25. 25.
    Yoshino, T., J. Ishikawa, K. Ohga, T. Morokata, R. Takezawa, H. Morio, Y. Okada, K. Honda, and T. Yamada. 2007. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. European Journal of Pharmacology 560: 225–233.CrossRefPubMedGoogle Scholar
  26. 26.
    Qi, Z., Y. Wang, H. Zhou, N. Liang, L. Yang, L. Liu, and W. Zhang. 2015. The central analgesic mechanism of YM-58483 in attenuating neuropathic pain in rats. Cell Mol Neurobiol.Google Scholar
  27. 27.
    Zhang, X., P. Shan, L.E. Otterbein, J. Alam, R.A. Flavell, R.J. Davis, A.M. Choi, and P.J. Lee. 2003. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. The Journal of Biological Chemistry 278: 1248–1258.CrossRefPubMedGoogle Scholar
  28. 28.
    Yamada, T., M. Hisanaga, Y. Nakajima, S. Mizuno, K. Matsumoto, T. Nakamura, and H. Nakano. 2000. Enhanced expression of hepatocyte growth factor by pulmonary ischemia-reperfusion injury in the rat. American Journal of Respiratory and Critical Care Medicine 162: 707–715.CrossRefPubMedGoogle Scholar
  29. 29.
    Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, W.M. Kuebler, and Group Acute Lung Injury in Animals Study. 2011. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. American Journal of Respiratory Cell and Molecular Biology 44: 725–738.CrossRefPubMedGoogle Scholar
  30. 30.
    Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, R. Razmpour, et al. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. The Journal of Clinical Investigation 123: 887–902.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Prakriya, M., S. Feske, Y. Gwack, S. Srikanth, A. Rao, and P.G. Hogan. 2006. Orai1 is an essential pore subunit of the CRAC channel. Nature 443: 230–233.CrossRefPubMedGoogle Scholar
  32. 32.
    Feske, S. 2009. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunological Reviews 231: 189–209.CrossRefPubMedGoogle Scholar
  33. 33.
    Feske, S. 2010. CRAC channelopathies. Pflugers Archiv-European Journal of Physiology 460: 417–435.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Prakriya, M., and R.S. Lewis. 2015. Store-operated calcium channels. Physiological Reviews 95: 1383–1436.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Clemens, R.A., and C.A. Lowell. 2015. Store-operated calcium signaling in neutrophils. Journal of Leukocyte Biology 98: 497–502.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion—from mechanism to translation. Nature Medicine 17: 1391–1401.CrossRefPubMedGoogle Scholar
  37. 37.
    Toda, K., K. Kayano, A. Karimova, Y. Naka, T. Fujita, K. Minamoto, C.Y. Wang, and D.J. Pinsky. 2000. Antisense intercellular adhesion molecule-1 (ICAM-1) oligodeoxyribonucleotide delivered during organ preservation inhibits posttransplant ICAM-1 expression and reduces primary lung isograft failure. Circulation Research 86: 166–174.CrossRefPubMedGoogle Scholar
  38. 38.
    Muro, S., and V.R. Muzykantov. 2005. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Current Pharmaceutical Design 11: 2383–2401.CrossRefPubMedGoogle Scholar
  39. 39.
    Smyth, J.T., S.Y. Hwang, T. Tomita, W.I. DeHaven, J.C. Mercer, and J.W. Putney. 2010. Activation and regulation of store-operated calcium entry. Journal of Cellular and Molecular Medicine 14: 2337–2349.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang, G., J. Zhang, C. Xu, X. Han, Y. Gao, and H. Chen. 2016. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide. Inflammation.Google Scholar
  41. 41.
    Prakash, A., S.V. Sundar, Y.G. Zhu, A. Tran, J.W. Lee, C. Lowell, and J. Hellman. 2015. Lung ischemia-reperfusion is a sterile inflammatory process influenced by commensal microbiota in mice. Shock 44: 272–279.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Niesler, U., A. Palmer, P. Radermacher, and M.S. Huber-Lang. 2014. Role of alveolar macrophages in the inflammatory response after trauma. Shock 42: 3–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Braun, A., J.E. Gessner, D. Varga-Szabo, S.N. Syed, S. Konrad, D. Stegner, T. Vogtle, R.E. Schmidt, and B. Nieswandt. 2009. STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 113: 1097–1104.CrossRefPubMedGoogle Scholar
  44. 44.
    Dadsetan, S., L. Zakharova, T.F. Molinski, and A.F. Fomina. 2008. Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation. The Journal of Biological Chemistry 283: 12512–12519.CrossRefPubMedGoogle Scholar
  45. 45.
    Geudens, N., B.M. Vanaudenaerde, A.P. Neyrinck, C. Van De Wauwer, R. Vos, G.M. Verleden, E. Verbeken, T. Lerut, and D.E. Van Raemdonck. 2007. The importance of lymphocytes in lung ischemia-reperfusion injury. Transplantation Proceedings 39: 2659–2662.CrossRefPubMedGoogle Scholar
  46. 46.
    Ohga, K., R. Takezawa, Y. Arakida, Y. Shimizu, and J. Ishikawa. 2008. Characterization of YM-58483/BTP2, a novel store-operated Ca2+ entry blocker, on T cell-mediated immune responses in vivo. International Immunopharmacology 8: 1787–1792.CrossRefPubMedGoogle Scholar
  47. 47.
    Lu, W., J. Wang, G. Peng, L.A. Shimoda, and J.T. Sylvester. 2009. Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology 297: L17–L25.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Peng, G., P. Ran, W. Lu, N. Zhong, and J. Wang. 2013. Acute hypoxia activates store-operated Ca(2+) entry and increases intracellular Ca(2+) concentration in rat distal pulmonary venous smooth muscle cells. Journal Thoracic Disease 5: 605–612.Google Scholar
  49. 49.
    Connolly, M.J., J. Prieto-Lloret, S. Becker, J.P. Ward, and P.I. Aaronson. 2013. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. The Journal of Physiology 591: 4473–4498.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gusarova, G.A., H.E. Trejo, L.A. Dada, A. Briva, L.C. Welch, R.B. Hamanaka, G.M. Mutlu, N.S. Chandel, M. Prakriya, and J.I. Sznajder. 2011. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Molecular and Cellular Biology 31: 3546–3556.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mungai, P.T., G.B. Waypa, A. Jairaman, M. Prakriya, D. Dokic, M.K. Ball, and P.T. Schumacker. 2011. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Molecular and Cellular Biology 31: 3531–3545.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Henke, N., P. Albrecht, I. Bouchachia, M. Ryazantseva, K. Knoll, J. Lewerenz, E. Kaznacheyeva, P. Maher, and A. Methner. 2013. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death & Disease 4: e470.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Anesthesiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Center for Anesthesiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina

Personalised recommendations