, Volume 40, Issue 3, pp 745–751 | Cite as

Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways

  • Ao Zhang
  • Weiyun Pan
  • Juan Lv
  • Hui WuEmail author


The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.


amygdalin ALI LPS NF-κB NLRP3 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Grichnik, K.P., and T.A. D’Amico. 2004. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Seminars in Cardiothoracic and Vascular Anesthesia 8: 317–334.CrossRefPubMedGoogle Scholar
  2. 2.
    Strauss, R.H., K.C. Palmer, and J.A. Hayes. 1976. Acute lung injury induced by cadmium aerosol. I. Evolution of alveolar cell damage. The American Journal of Pathology 84: 561–578.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Fein, A.M., and M.G. Calalang-Colucci. 2000. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Critical Care Clinics 16: 289–317.CrossRefPubMedGoogle Scholar
  4. 4.
    Gunther, A., C. Siebert, R. Schmidt, S. Ziegler, F. Grimminger, M. Yabut, B. Temmesfeld, D. Walmrath, H. Morr, and W. Seeger. 1996. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. American Journal of Respiratory and Critical Care Medicine 153: 176–184.CrossRefPubMedGoogle Scholar
  5. 5.
    Shen, W., J. Gan, S. Xu, G. Jiang, and H. Wu. 2009. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacological Research 60: 296–302.CrossRefPubMedGoogle Scholar
  6. 6.
    Covert, M.W., T.H. Leung, J.E. Gaston, and D. Baltimore. 2005. Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309: 1854–1857.CrossRefPubMedGoogle Scholar
  7. 7.
    Ghosh, S., M.J. May, and E.B. Kopp. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual Review of Immunology 16: 225–260.CrossRefPubMedGoogle Scholar
  8. 8.
    Kolb, M., P.J. Margetts, D.C. Anthony, F. Pitossi, and J. Gauldie. 2001. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. The Journal of Clinical Investigation 107: 1529–1536.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu, S., G. Feng, G.L. Wang, and G.J. Liu. 2008. p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. European Journal of Pharmacology 584: 159–165.CrossRefPubMedGoogle Scholar
  10. 10.
    Moertel, C.G., T.R. Fleming, J. Rubin, L.K. Kvols, G. Sarna, R. Koch, V.E. Currie, C.W. Young, S.E. Jones, and J.P. Davignon. 1982. A clinical trial of amygdalin (Laetrile) in the treatment of human cancer. The New England Journal of Medicine 306: 201–206.CrossRefPubMedGoogle Scholar
  11. 11.
    Park, H.J., S.H. Yoon, L.S. Han, L.T. Zheng, K.H. Jung, Y.K. Uhm, J.H. Lee, J.S. Jeong, W.S. Joo, S.V. Yim, et al. 2005. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World Journal of Gastroenterology 11: 5156–5161.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Paoletti, I., V. De Gregorio, A. Baroni, M.A. Tufano, G. Donnarumma, and J.J. Perez. 2013. Amygdalin analogues inhibit IFN-gamma signalling and reduce the inflammatory response in human epidermal keratinocytes. Inflammation 36: 1316–1326.CrossRefPubMedGoogle Scholar
  13. 13.
    Hwang, H.J., H.J. Lee, C.J. Kim, I. Shim, and D.H. Hahm. 2008. Inhibitory effect of amygdalin on lipopolysaccharide-inducible TNF-alpha and IL-1beta mRNA expression and carrageenan-induced rat arthritis. Journal of Microbiology and Biotechnology 18: 1641–1647.PubMedGoogle Scholar
  14. 14.
    Heikkila, R.E., and F.S. Cabbat. 1980. The prevention of alloxan-induced diabetes by amygdalin. Life Sciences 27: 659–662.CrossRefPubMedGoogle Scholar
  15. 15.
    Ruffini, E., A. Parola, E. Papalia, P.L. Filosso, M. Mancuso, A. Oliaro, G. Actis-Dato, and G. Maggi. 2001. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. European Journal of Cardio-Thoracic Surgery 20: 30–36. discussion 36–37.CrossRefPubMedGoogle Scholar
  16. 16.
    Meduri, G.U., S. Headley, G. Kohler, F. Stentz, E. Tolley, R. Umberger, and K. Leeper. 1995. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107: 1062–1073.CrossRefPubMedGoogle Scholar
  17. 17.
    Meduri, G.U., G. Kohler, S. Headley, E. Tolley, F. Stentz, and A. Postlethwaite. 1995. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108: 1303–1314.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang, X., K. Song, H. Xiong, H. Li, X. Chu, and X. Deng. 2009. Protective effect of florfenicol on acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 9: 1525–1529.CrossRefPubMedGoogle Scholar
  19. 19.
    Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14: 523–535.CrossRefGoogle Scholar
  20. 20.
    Reutershan, J., A. Basit, E.V. Galkina, and K. Ley. 2005. Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. American Journal of Physiology—Lung Cellular and Molecular Physiology 289: L807–L815.CrossRefPubMedGoogle Scholar
  21. 21.
    Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: a key role in inflammatory diseases. The Journal of Clinical Investigation 107: 7–11.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Karin, M., and F.R. Greten. 2005. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology 5: 749–759.CrossRefPubMedGoogle Scholar
  23. 23.
    Frank, J.A., J.F. Pittet, C. Wray, and M.A. Matthay. 2008. Protection from experimental ventilator-induced acute lung injury by IL-1 receptor blockade. Thorax 63: 147–153.CrossRefPubMedGoogle Scholar
  24. 24.
    Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, T. Fernandes-Alnemri, J. Wu, B.G. Monks, K.A. Fitzgerald, et al. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. The Journal of Immunology 183: 787–791.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van de Veerdonk, F.L., M.G. Netea, C.A. Dinarello, and L.A. Joosten. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends in Immunology 32: 110–116.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Intensive Care UnitFirst Hospital of Jilin UniversityChangchunChina
  2. 2.Department of OphthalmologyFirst Hospital of Jilin UniversityChangchunChina

Personalised recommendations