, Volume 40, Issue 3, pp 735–744 | Cite as

IRF3 Inhibits Neutrophil Recruitment in Mice Infected with Pseudomonas aeruginosa

  • Zhenghao PiaoEmail author
  • Haiying Yuan
  • Cuili Wang
  • Liyun ShiEmail author


Pseudomonas aeruginosa is the major cause of morbidity and mortality in patients with ventilator-associated pneumonia. Interferon regulatory factor 3 (IRF3) is a transcription factor that plays an important role in the immune response to viral infection via the IRF3/IFN-β signaling pathway. Controversial data exist regarding the role of IRF3 in immune cell recruitment during bacterial infections. IRF3 has been shown to promote neutrophil recruitment and bacterial clearance in mice infected with P. aeruginosa by inducing the production of specific chemokines and cytokines. In contrast, our study showed that IRF3 knockout (KO) mice infected with P. aeruginosa exhibited greater survival rates, demonstrated enhanced bacterial clearance, and showed significantly increased neutrophil recruitment to the lungs, when compared with the wild-type (WT) mice. The peritoneal lavage fluid collected from IRF3 KO mice 4 h after intraperitoneal injection with P. aeruginosa or 3% thioglycolate contained a significantly increased number of neutrophils. Furthermore, neutrophils from the bone marrow (BM) of IRF3 KO mice showed greater adhesiveness to the extracellular matrix when compared with those of WT mice, post-P. aeruginosa infection. In addition, IRF3 induced the expression of target genes in WT neutrophils infected with P. aeruginosa. These findings indicate that IRF3 exacerbates P. aeruginosa-induced mortality in mice by inhibiting neutrophil adhesion and recruitment to the lungs. Together, these data indicate that the inhibition of IRF3 might provide a possible mechanism for controlling P. aeruginosa infections.


IRF3 Neutrophil Recruitment Pseudomonas aeruginosa 



Bronchoalveolar lavage fluid


Bone marrow


Cecal ligation and puncture


IRF3 knockout


Interferon regulatory factor 3


Peritoneal lavage fluid


Wild type



This work was supported by the Nature Science funding sponsored by Zhejiang Provincial (KZ13058) and Research fund from Hangzhou Normal University (PD12002004121).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.


Zhenghao Piao designed and performed the experiments, analyzed the data, and wrote the manuscript. Haiying Yuan assisted in the writing of this manuscript, and Cuili Wang performed some of the experiments. Liyun Shi helped in the experimental design and edited the manuscript.


  1. 1.
    Rello, J., T. Lisboa, and D. Koulenti. 2014. Respiratory infections in patients undergoing mechanical ventilation. Lancet Respir Med 2: 764–774.CrossRefPubMedGoogle Scholar
  2. 2.
    van Delden, C. 2007. Pseudomonas aeruginosa bloodstream infections: how should we treat them? Int J Antimicrob Agents 30(Suppl 1): S71–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Bassetti, M., G. Villa, and D. Pecori. 2014. Antibiotic-resistant Pseudomonas aeruginosa: focus on care in patients receiving assisted ventilation. Future Microbiol 9: 465–474.CrossRefPubMedGoogle Scholar
  4. 4.
    Tumbarello, M., E. Repetto, E.M. Trecarichi, C. Bernardini, G. De Pascale, et al. 2011. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 139: 1740–1749.CrossRefPubMedGoogle Scholar
  5. 5.
    Duszynska, W. 2012. Strategies of empiric antibiotic therapy in severe sepsis. Anaesthesiol Intensive Ther 44: 96–103.PubMedGoogle Scholar
  6. 6.
    Carrigan, S.O., R. Junkins, Y.J. Yang, A. Macneil, C. Richardson, et al. 2010. IFN regulatory factor 3 contributes to the host response during Pseudomonas aeruginosa lung infection in mice. J Immunol 185: 3602–3609.CrossRefPubMedGoogle Scholar
  7. 7.
    Lavoie, E.G., T. Wangdi, and B.I. Kazmierczak. 2011. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 13: 1133–1145.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bordon, J., S. Aliberti, R. Fernandez-Botran, S.M. Uriarte, M.J. Rane, et al. 2013. Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int J Infect Dis 17: e76–83.CrossRefPubMedGoogle Scholar
  9. 9.
    Gellatly, S.L., and R.E. Hancock. 2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67: 159–173.CrossRefPubMedGoogle Scholar
  10. 10.
    Honda, K., and T. Taniguchi. 2006. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6: 644–658.CrossRefPubMedGoogle Scholar
  11. 11.
    O’Connell, R.M., S.K. Saha, S.A. Vaidya, K.W. Bruhn, G.A. Miranda, et al. 2004. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200: 437–445.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stockinger, S., B. Reutterer, B. Schaljo, C. Schellack, S. Brunner, et al. 2004. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J Immunol 173: 7416–7425.CrossRefPubMedGoogle Scholar
  13. 13.
    Opitz, B., M. Vinzing, V. van Laak, B. Schmeck, G. Heine, et al. 2006. Legionella pneumophila induces IFNbeta in lung epithelial cells via IPS-1 and IRF3, which also control bacterial replication. J Biol Chem 281: 36173–36179.CrossRefPubMedGoogle Scholar
  14. 14.
    Buss, C., B. Opitz, A.C. Hocke, J. Lippmann, V. van Laak, et al. 2010. Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells. J Immunol 184: 3072–3078.CrossRefPubMedGoogle Scholar
  15. 15.
    Walker, W.E., A.T. Bozzi, and D.R. Goldstein. 2012. IRF3 contributes to sepsis pathogenesis in the mouse cecal ligation and puncture model. J Leukoc Biol 92: 1261–1268.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fischer, H., N. Lutay, B. Ragnarsdottir, M. Yadav, K. Jonsson, et al. 2010. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog 6: e1001109.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sakaguchi, S., H. Negishi, M. Asagiri, C. Nakajima, T. Mizutani, et al. 2003. Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun 306: 860–866.CrossRefPubMedGoogle Scholar
  18. 18.
    Moore, T.C., L. Cody, P.M. Kumm, D.M. Brown, and T.M. Petro. 2013. IRF3 helps control acute TMEV infection through IL-6 expression but contributes to acute hippocampus damage following TMEV infection. Virus Res 178: 226–233.CrossRefPubMedGoogle Scholar
  19. 19.
    Chung, J.W., Z.H. Piao, S.R. Yoon, M.S. Kim, M. Jeong, et al. 2009. Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis. PLoS Pathog 5: e1000561.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lovewell, R.R., Y.R. Patankar, and B. Berwin. 2014. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 306: L591–603.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zarbock, A., and K. Ley. 2009. Neutrophil adhesion and activation under flow. Microcirculation 16: 31–42.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Prince, L.R., S.M. Bianchi, K.M. Vaughan, M.A. Bewley, H.M. Marriott, et al. 2008. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. J Immunol 180: 3502–3511.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Allen, L., D.H. Dockrell, T. Pattery, D.G. Lee, P. Cornelis, et al. 2005. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174: 3643–3649.CrossRefPubMedGoogle Scholar
  24. 24.
    Chattopadhyay, S., J.T. Marques, M. Yamashita, K.L. Peters, K. Smith, et al. 2010. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29: 1762–1773.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Iwai, A., T. Shiozaki, and T. Miyazaki. 2013. Relevance of signaling molecules for apoptosis induction on influenza A virus replication. Biochem Biophys Res Commun 441: 531–537.CrossRefPubMedGoogle Scholar
  26. 26.
    Ramirez-Estrada, S., B. Borgatta, and J. Rello. 2016. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 9: 7–18.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13: 159–175.CrossRefPubMedGoogle Scholar
  28. 28.
    Nauseef, W.M., and N. Borregaard. 2014. Neutrophils at work. Nat Immunol 15: 602–611.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, H.Y., E.A. Skokos, D.J. Myer, P. Agaba, and A.L. Gonzalez. 2014. alphaVbeta3 Integrin Regulation of Respiratory Burst in Fibrinogen Adherent Human Neutrophils. Cell Mol Bioeng 7: 231–242.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sarangi, P.P., Y.M. Hyun, Y.V. Lerman, A.P. Pietropaoli, and M. Kim. 2012. Role of beta1 integrin in tissue homing of neutrophils during sepsis. Shock 38: 281–287.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Harris, E.S., T.M. McIntyre, S.M. Prescott, and G.A. Zimmerman. 2000. The leukocyte integrins. J Biol Chem 275: 23409–23412.CrossRefPubMedGoogle Scholar
  32. 32.
    Langereis, J.D. 2013. Neutrophil integrin affinity regulation in adhesion, migration, and bacterial clearance. Cell Adh Migr 7: 476–481.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Borregaard, N. 2010. Neutrophils, from marrow to microbes. Immunity 33: 657–670.CrossRefPubMedGoogle Scholar
  34. 34.
    Evans, R., I. Patzak, L. Svensson, K. De Filippo, K. Jones, et al. 2009. Integrins in immunity. J Cell Sci 122: 215–225.CrossRefPubMedGoogle Scholar
  35. 35.
    Manago, A., K.A. Becker, A. Carpinteiro, B. Wilker, M. Soddemann, et al. 2015. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 22: 1097–1110.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Usher, L.R., R.A. Lawson, I. Geary, C.J. Taylor, C.D. Bingle, et al. 2002. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168: 1861–1868.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Basic Medical Science, School of MedicineHangzhou Normal UniversityHangzhouChina
  2. 2.Department of Clinical Laboratory, Women’s Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Kidney Disease Center, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
  4. 4.Department of ImmunologyNanjing University of Chinese MedicineNanjingChina

Personalised recommendations