Advertisement

Inflammation

, Volume 40, Issue 1, pp 248–258 | Cite as

Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma

  • Preeti S. Chauhan
  • D. Dash
  • Rashmi SinghEmail author
ORIGINAL ARTICLE

Abstract

Pulmonary fibrosis is associated with irreversible, or partially reversible, airflow obstruction and ultimately unresponsiveness to asthma therapies such as corticosteroids. Intranasal curcumin, an anti-inflammatory molecule, has been found effective in allergic asthma. To study the effect of intranasal curcumin on airway remodeling and fibrosis in murine model of chronic asthma, BALB/c mice were sensitized to ovalbumin (OVA) and exposed to OVA aerosol (2%) from day 21 (after sensitization) for 5 weeks (twice/week). Curcumin (intranasal) was administered during the OVA aerosol challenge. Mice exposed to OVA developed inflammation dominated by eosinophils which lead to fibrosis and airway remodeling. Intranasal administration of curcumin significantly inhibited airway inflammation and pulmonary fibrosis, where MMP-9 activities were decreased along with α-smooth muscle actin (α-SMA), MMP-9, TIMP-1, and eotaxin expressions. These results suggest that intranasal curcumin regulates airway inflammation and remodeling in chronic asthma.

KEY WORDS

extracellular matrix fibrosis anti-inflammatory airway remodeling 

Notes

ACKNOWLEDGEMENTS

Authors are thankful to Department of Science and Technology - Science and Engineering Research Board, (DST-SERB) and Council of Scientific and Industrial Research, India for financial assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Sumi, Y., and Q. Hamid. 2007. Airway remodeling in asthma. Allergology International 56: 341–348.CrossRefPubMedGoogle Scholar
  2. 2.
    Conroy, D.M., and T.J. Williams. 2001. Eotaxin and the attraction of eosinophils to the asthmatic lung. Respiratory Research 2: 1.Google Scholar
  3. 3.
    Aceves, S.S., R.O. Newbury, M.A. Dohil, J.F. Bastian, and R. Dohil. 2009. A symptom scoring tool for identifying pediatric patients with eosinophilic esophagitis and correlating symptoms with inflammation. Annals of Allergy, Asthma, and Immunology 103(5): 401–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Bloemen, K., S. Verstraelen, R. Van Den Heuvel, H. Witters, I. Nelissen, and G. Schoeters. 2007. The allergic cascade: review of the most important molecules in the asthmatic lung. Immunology Letters 113: 6–18.CrossRefPubMedGoogle Scholar
  5. 5.
    Darby, I.A., B. Laverdet, and A. Bonté Fand Desmoulière. 2014. Fibroblasts and myofibroblasts in wound healing. Clinical, Cosmetic and Investigational Dermatology 7: 301.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Todd, N.W., I.G. Luzina, and S.P. Atamas. 2012. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogen Tissue Repair 5: 11.CrossRefGoogle Scholar
  7. 7.
    Wynn, T.A. 2011. Integrating mechanisms of pulmonary fibrosis. The Journal of Experimental Medicine 208: 1339–1350.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johnson, C., and Z.S. Galis. 2004. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arteriosclerosis, Thrombosis and Vascular Biology 24: 54–60.CrossRefGoogle Scholar
  9. 9.
    Johnson, P.R.A., and Annual Scientific Meeting of ASCEPT. 2001. Role of human airway smooth muscle in altered extracellular matrix production in asthma. Clinical and Experimental Pharmacology and Physiology 28: 233–236.CrossRefPubMedGoogle Scholar
  10. 10.
    Wenzel, S.E., S. Balzar, M. Cundall, and H.W. Chu. 2003. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair. Journalof Allergy and Clinical Immunology 111: 1345–1352.CrossRefGoogle Scholar
  11. 11.
    Tanaka, H., N. Miyazaki, K. Oashi, S. Tanaka, M. Ohmichi, and S. Abe. 2000. Sputum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio in acute asthma. Journalof Allergy and Clinical Immunology 105: 900–905.CrossRefGoogle Scholar
  12. 12.
    Holgate, S.T. 2008. Pathogenesis of asthma. Clinical Experimental Allergy 38: 872–897.CrossRefPubMedGoogle Scholar
  13. 13.
    Barnes, P.J. 2006. Drugs for asthma. British Journal of Pharmacology 147: S297–S303.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kamboj, V.P. 2000. Herbal medicine. Current Science 78: 35–38.Google Scholar
  15. 15.
    Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics 4: 807–818.CrossRefPubMedGoogle Scholar
  16. 16.
    Subhashini, Chauhan P.S., S. Kumari, et al. 2013. Intranasal curcumin and its evaluation in murine model of asthma. International Immunopharmacology 17: 733–743.CrossRefPubMedGoogle Scholar
  17. 17.
    Chauhan, P.S., D. Dash, and R. Singh. 2014. Intranasal curcumin attenuates airway remodeling in murine model of chronic asthma. International Immunopharmacology 21: 63–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Ahmad, T., U. Mabalirajan, K. Hasija, B. Ghosh, and A. Agrawal. 2011. Mepacrine treatment attenuates allergic airway remodeling segregated from airway inflammation in mice. Internatinal Immunopharmacology 11: 74–78.CrossRefGoogle Scholar
  19. 19.
    Christensen, P.J., R.E. Goodman, L. Pastoriza, B. Moore, and G.B. Toews. 1999. Induction of lung fibrosis in the mouse by intratracheal instillation of fluorescein isothiocyanate is not T-cell-dependent. The American Journal of Pathology 155: 1773–1779.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Corry, D.B., K. Rishi, J. Kanellis, et al. 2002. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nature Immunology 3: 347–353.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kay, A.B., S. Phipps, and D.S. Robinson. 2004. A role for eosinophils in airway remodelling in asthma. Trends in Immunology 25: 477–482.CrossRefPubMedGoogle Scholar
  22. 22.
    Humbles, A.A., C.M. Lloyd, S.J. McMillan, D.S. Friend, G. Xanthou, and Gerard C. McKenna. 2004. A critical role for eosinophils in allergic airways remodeling. Science 305(5691): 1776–1779.CrossRefPubMedGoogle Scholar
  23. 23.
    Paplińska, M., H. Grubek-Jaworska, and R. Chazan. 2007. Role of eotaxin in the pathophysiology of asthma. Polish Pneumonology and Allergology 75: 180–185.PubMedGoogle Scholar
  24. 24.
    Bousquet, J., P.K. Jeffery, W.W. Busse, M. Johnson, and A.M. Vignola. 2000. Asthma: from bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine 161: 1720–1745.CrossRefPubMedGoogle Scholar
  25. 25.
    Postma, D.S., and W. Timens. 2006. Remodeling in asthma and chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society 3: 434–439.CrossRefPubMedGoogle Scholar
  26. 26.
    Puxeddu, I., R. Bader, A.M. Piliponsky, R. Reich, F. Levi-Schaffer, and N. Berkman. 2006. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts. Journal of Allergy and Clinical Immunology 117: 103–110.CrossRefPubMedGoogle Scholar
  27. 27.
    Roche, W., J. Williams, R. Beasley, and S. Holgate. 1989. Subepithelial fibrosis in the bronchi of asthmatics. The Lancet 33: 520–524.CrossRefGoogle Scholar
  28. 28.
    Huang, J., R. Olivenstein, R. Taha, Q. Hamid, and M. Ludwig. 1999. Enhanced proteoglycan deposition in the airway wall of atopic asthmatics. American Journal of Respiratory and Critical Care Medicine 160: 725–729.CrossRefPubMedGoogle Scholar
  29. 29.
    Gaggar, A., Y. Li, N. Weathington, et al. 2007. Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. American Journal of Physiology-Lung Cellular and Molecular Physiology 293: L96–L104.CrossRefPubMedGoogle Scholar
  30. 30.
    Nagese, H., and J.F. Woessner Jr. 1999. Matrix metalloproteinses. Journal of Biological Chemistry 274: b1.CrossRefGoogle Scholar
  31. 31.
    Devarajan, P., J. Johnston, S. Ginsberg, H.E. Van Wart, and N. Berliner. 1992. Structure and expression of neutrophil gelatinase cDNA. Identity with type IV collagenase from HT1080 cells. Journal of Biological Chemistry 267: 25228–25232.PubMedGoogle Scholar
  32. 32.
    Schwingshackl, A., M. Duszyk, N. Brown, and R. Moqbel. 1999. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-α. Journa of Allergy and Clinical Immunology 104: 983–990.CrossRefGoogle Scholar
  33. 33.
    Chakrabarti, S., and K.D. Patel. 2005. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Experimental Lung Research 31: 599–621.CrossRefPubMedGoogle Scholar
  34. 34.
    Maisi, P., K. Prikk, R. Sepper, et al. 2002. Soluble membrane‐type 1 matrix metalloproteinase (MT1‐MMP) and gelatinase A (MMP‐2) in induced sputum and bronchoalveolar lavage fluid of human bronchial asthma and bronchiectasis. Apmis 110: 771–782.CrossRefPubMedGoogle Scholar
  35. 35.
    Mautino, G., C. Henriquet, C. Gougat, et al. 1999. Increased expression of tissue inhibitor of metalloproteinase-1 and loss of correlation with matrix metalloproteinase-9 by macrophages in asthma. Laboratory investigation. A Journal of Technical Methods and Pathology 79: 39–47.Google Scholar
  36. 36.
    Han, Z., and N. Zhong. 2003. Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respiratory Medicine 97: 563–567.CrossRefPubMedGoogle Scholar
  37. 37.
    Hoshino, M., Y. Nakamura, J. Sim, J. Shimojo, and S. Isogai. 1998. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. Journal of Allergy and Clinical Immunology 102: 783–788.CrossRefPubMedGoogle Scholar
  38. 38.
    Mautino, G., N. Oliver, P. Chanez, J. Bousquet, and F. Capony. 1997. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. American Journal of Respiratory Cellular and Molecular Biology 7: 583–591.CrossRefGoogle Scholar
  39. 39.
    Kelly, E.A., W.W. Busse, and N.N. Jarjour. 2000. Increased matrix metalloproteinase-9 in the airway after allergen challenge. American Journal of Respiratory and Critical Care Medicine 162: 1157–1161.CrossRefPubMedGoogle Scholar
  40. 40.
    Cataldo, D.D., J. Bettiol, A. Noël, P. Bartsch, J.M. Foidart, and R. Louis. 2002. Matrix metalloproteinase-9, but not tissue inhibitor of matrix metalloproteinase-1, increases in the sputum from allergic asthmatic patients after allergen challenge. CHEST Journal 122: 1553–1559.CrossRefGoogle Scholar
  41. 41.
    Carroll, N., J. Elliot, A. Morton, and A. James. 1993. The structure of large and small airways in nonfatal and fatal asthma. The American Review of Respiratory Disease 147: 405–410.CrossRefPubMedGoogle Scholar
  42. 42.
    James, A.L., P.D. Paré, and J.C. Hogg. 1989. The mechanics of airway narrowing in asthma. The American Review of Respiratory Disease 39: 242–246.CrossRefGoogle Scholar
  43. 43.
    Kuwano, K., C.H. Bosken, P.D. Paré, T.R. Bai, B.R. Wiggs, and J.C. Hogg. 1993. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. The American Review of Respiratory Disease 148: 1220–1225.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ZoologyMMV UnitVaranasiIndia
  2. 2.Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations