, Volume 40, Issue 1, pp 68–78 | Cite as

Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing

  • Yuanyuan Guo
  • Zhiyin Yang
  • Shan Wu
  • Peng Xu
  • Yinbo Peng
  • Min YaoEmail author


The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.


IRF8 wound healing macrophage inflammation 



This work was supported partially by the National Natural Science Foundation of China (Nos. 81272113 and 81201469).

Compliance with Ethical Standards

This study was approved by the Ethics Committee of the Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine (2013-022). Preoperative informed consent was obtained from each patient registered in this study in accordance with the institutional guidelines.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Martin, P. 1997. Wound healing—Aiming for perfect skin regeneration. Science 276(5309): 75–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Xu, Z., H. Xu, V.A. Ploplis, and F.J. Castellino. 2010. Factor VII deficiency impairs cutaneous wound healing in mice. Molecular Medicine 16(5–6): 167–176.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Morris Jr., M.W., M. Allukian 3rd, B.J. Herdrich, R.C. Caskey, C. Zgheib, J. Xu, W. Dorsett-Martin, M.E. Mitchell, and K.W. Liechty. 2014. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration 22(3): 406–414.CrossRefPubMedGoogle Scholar
  4. 4.
    Koh, T.J., and L.A. DiPietro. 2011. Inflammation and wound healing: The role of the macrophage. Expert Reviews in Molecular Medicine 13: e23.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mahdavian Delavary, B., W.M. van der Veer, M. van Egmond, F.B. Niessen, and R.H. Beelen. 2011. Macrophages in skin injury and repair. Immunobiology 216(7): 753–762.CrossRefPubMedGoogle Scholar
  6. 6.
    Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184(7): 3964–3977.CrossRefGoogle Scholar
  7. 7.
    Mirza, R., L.A. DiPietro, and T.J. Koh. 2009. Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology 175(6): 2454–2462.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gu, X.Y., S.E. Shen, C.F. Huang, Y.N. Liu, Y.C. Chen, L. Luo, Y. Zeng, and A.P. Wang. 2013. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Research and Clinical Practice 102(1): 53–59.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang, Q.Z., W.R. Su, S.H. Shi, P. Wilder-Smith, A.P. Xiang, A. Wong, A.L. Nguyen, C.W. Kwon, and A.D. Le. 2010. Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10): 1856–1868.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dror, N., M. Alter-Koltunoff, A. Azriel, N. Amariglio, J. Jacob-Hirsch, S. Zeligson, A. Morgenstern, T. Tamura, H. Hauser, G. Rechavi, K. Ozato, and B.Z. Levi. 2007. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Molecular Immunology 44(4): 338–346.CrossRefPubMedGoogle Scholar
  11. 11.
    Tamura, T., P. Thotakura, T.S. Tanaka, M.S. Ko, and K. Ozato. 2005. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106(6): 1938–1947.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Langlais, D., L.B. Barreiro, and P. Gros. 2016. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. The Journal of Experimental Medicine 213(4): 585–603.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mancino, A., A. Termanini, I. Barozzi, S. Ghisletti, R. Ostuni, E. Prosperini, K. Ozato, and G. Natoli. 2015. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes & Development 29(4): 394–408.CrossRefGoogle Scholar
  14. 14.
    Tsujimura, H., T. Nagamura-Inoue, T. Tamura, and K. Ozato. 2002. IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. Journal of Immunology 169(3): 1261–1269.CrossRefGoogle Scholar
  15. 15.
    Paschall, A.V., R. Zhang, C.F. Qi, K. Bardhan, L. Peng, G. Lu, J. Yang, M. Merad, T. McGaha, G. Zhou, A. Mellor, S.I. Abrams, H.C. Morse 3rd, K. Ozato, H. Xiong, and K. Liu. 2015. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. Journal of Immunology 194(5): 2369–2379.CrossRefGoogle Scholar
  16. 16.
    Wang, H., and H.C. Morse 3rd. 2009. IRF8 regulates myeloid and B lymphoid lineage diversification. Immunologic Research 43(1–3): 109–117.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kurotaki, D., M. Yamamoto, A. Nishiyama, K. Uno, T. Ban, M. Ichino, H. Sasaki, S. Matsunaga, M. Yoshinari, A. Ryo, M. Nakazawa, K. Ozato, and T. Tamura. 2014. IRF8 inhibits C/EBPalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nature Communications 5: 4978.CrossRefPubMedGoogle Scholar
  18. 18.
    Sasaki, H., D. Kurotaki, N. Osato, H. Sato, I. Sasaki, S. Koizumi, H. Wang, C. Kaneda, A. Nishiyama, T. Kaisho, H. Aburatani, H.C. Morse 3rd, K. Ozato, and T. Tamura. 2015. Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2): 358–369.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Watanabe, T., C. Hotta, S. Koizumi, K. Miyashita, J. Nakabayashi, D. Kurotaki, G.R. Sato, M. Yamamoto, M. Nakazawa, H. Fujita, R. Sakai, S. Fujisawa, A. Nishiyama, Z. Ikezawa, M. Aihara, Y. Ishigatsubo, and T. Tamura. 2013. The transcription factor IRF8 counteracts BCR-ABL to rescue dendritic cell development in chronic myelogenous leukemia. Cancer Research 73(22): 6642–6653.CrossRefPubMedGoogle Scholar
  20. 20.
    Szelag, M., Piaszyk-Borychowska, A., Plens-Galaska, M., Wesoly, J., and Bluyssen, H.A. 2016. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget. doi: 10.18632/oncotarget.9195.
  21. 21.
    Chmielewski, S., A. Piaszyk-Borychowska, J. Wesoly, and H.A. Bluyssen. 2015. STAT1 and IRF8 in vascular inflammation and cardiovascular disease: Diagnostic and therapeutic potential. International Reviews of Immunology 25: 1–21.Google Scholar
  22. 22.
    Yan, M., H. Wang, J. Sun, W. Liao, P. Li, Y. Zhu, C. Xu, J. Joo, Y. Sun, S. Abbasi, A. Kovalchuk, N. Lv, W.J. Leonard, and H.C. Morse. 2016. Cutting edge: Expression of IRF8 in gastric epithelial cells confers protective innate immunity against Helicobacter pylori infection. Journal of Immunology 196(5): 1999–2003.CrossRefGoogle Scholar
  23. 23.
    Luda, K.M., T. Joeris, E.K. Persson, A. Rivollier, M. Demiri, K.M. Sitnik, L. Pool, J.B. Holm, F. Melo-Gonzalez, L. Richter, B.N. Lambrecht, K. Kristiansen, M.A. Travis, M. Svensson-Frej, K. Kotarsky, and W.W. Agace. 2016. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44(4): 860–874.CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshida, Y., R. Yoshimi, H. Yoshii, D. Kim, A. Dey, H. Xiong, J. Munasinghe, I. Yazawa, M.J. O’Donovan, O.A. Maximova, S. Sharma, J. Zhu, H. Wang, H.C. Morse 3rd, and K. Ozato. 2014. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40(2): 187–198.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xiang, M., L. Wang, S. Guo, Y.Y. Lu, H. Lei, D.S. Jiang, Y. Zhang, Y. Liu, Y. Zhou, X.D. Zhang, and H. Li. 2014. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. Journal of Neurochemistry 129(6): 988–1001.CrossRefPubMedGoogle Scholar
  26. 26.
    Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato. 2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13(2): 155–165.CrossRefPubMedGoogle Scholar
  27. 27.
    Koschwanez, H., M. Vurnek, J. Weinman, J. Tarlton, C. Whiting, S. Amirapu, S. Colgan, D. Long, P. Jarrett, and E. Broadbent. 2015. Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing. Brain, Behavior, and Immunity 50: 47–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Collin, M., and P. Milne. 2016. Langerhans cell origin and regulation. Current Opinion in Hematology 23(1): 28–35.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Masuda, T., S. Iwamoto, S. Mikuriya, H. Tozaki-Saitoh, T. Tamura, M. Tsuda, and K. Inoue. 2015. Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. Journal of Pharmacological Sciences 128(4): 216–220.CrossRefPubMedGoogle Scholar
  30. 30.
    Simon, P.S., S.K. Sharman, C. Lu, D. Yang, A.V. Paschall, S.S. Tulachan, and K. Liu. 2015. The NF-kappaB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 15: 770.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang, D., M. Thangaraju, D.D. Browning, Z. Dong, B. Korchin, D.C. Lev, V. Ganapathy, and K. Liu. 2007. IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression. Journal of Immunology 179(7): 4775–4782.CrossRefGoogle Scholar
  32. 32.
    Hu, X., D. Yang, M. Zimmerman, F. Liu, J. Yang, S. Kannan, A. Burchert, Z. Szulc, A. Bielawska, K. Ozato, K. Bhalla, and K. Liu. 2011. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Research 71(8): 2882–2891.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuanyuan Guo
    • 1
  • Zhiyin Yang
    • 2
  • Shan Wu
    • 1
  • Peng Xu
    • 1
  • Yinbo Peng
    • 1
  • Min Yao
    • 1
    • 3
    Email author
  1. 1.Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Institute of Traumatic MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Department of Thoracic Surgery, Shanghai Ninth People’s Hospital, Institute of Traumatic MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.Wellman Center for Photomedicine, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations