Skip to main content

Advertisement

Log in

Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Indirubin plays an important role in the treatment of many chronic diseases and exhibits strong anti-inflammatory activity. However, the molecular mode of action during mastitis prophylaxis remains poorly understood. In this study, a lipopolysaccharide (LPS)-induced mastitis mouse model showed that indirubin attenuated histopathological changes in the mammary gland, local tissue necrosis, and neutrophil infiltration. Moreover, indirubin significantly downregulated the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). We explored the mechanism whereby indirubin exerts protective effects against LPS-induced inflammation of mouse mammary epithelial cells (MMECs). The addition of different concentrations of indirubin before exposure of cells to LPS for 1 h significantly attenuated inflammation and reduced the concentrations of the three inflammatory cytokines in a dose-dependent manner. Indirubin downregulated LPS-induced cyclooxygenase-2 (COX-2) and Toll-like receptor 4 (TLR4) expression, inhibited phosphorylation of the LPS-induced nuclear transcription factor-kappa B (NF-kB) P65 protein and its inhibitor IkBα of the NF-kB signaling pathway. Furthermore, indirubin suppressed phosphorylation of P38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signal pathways. Thus, indirubin effectively suppressed LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways and may be useful for mastitis prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu, C., R. Gong, A. Guo, and H. Chen. 2010. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine 28: 4038–4044.

    Article  CAS  PubMed  Google Scholar 

  2. De Vliegher, S., L.K. Fox, S. Piepers, S. McDougall, and H.W. Barkema. 2012. Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention and control. Journal of Dairy Science 95: 1025–1040.

    Article  PubMed  Google Scholar 

  3. Calvinho, L.F., and L. Tirante. 2005. Prevalencia de microorganismos patógenos de mastitis bovinay evolución del estado de salud de la glándula mamaria en Argentina en losúltimos 25 años. Revista FAVE 4: 29–40.

    Google Scholar 

  4. Watts, J.L. 1988. Etiological agents of bovine mastitis. Veterinary Microbiology 16: 41–66.

    Article  CAS  PubMed  Google Scholar 

  5. Wellenberg, G.J., W.H. Vander Poel, and J.T. Van Oirschot. 2002. Viral infections and bovine mastitis: a review. Veterinary Microbiology 88: 27–45.

    Article  CAS  PubMed  Google Scholar 

  6. Guo, M., Y. Cao, T. Wang, X. Song, Z. Liu, E. Zhou, X. Deng, N. Zhang, and Z. Yang. 2014. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. European Journal of Pharmacology 723: 481–488.

    Article  CAS  PubMed  Google Scholar 

  7. Burvenich, C., V. Van Merris, J. Mehrzad, A. Diez-Fraile, and L. Duchteau. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Veterinary Research 34: 521–564.

    Article  PubMed  Google Scholar 

  8. Vangroenweghe, F., P. Rainard, M. Paape, L. Duchateau, and C. Burvenich. 2004. Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. Journal of Dairy Science 87: 4132–4144.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Z., E. Zhou, D. Wei, D. Li, Z. Wei, W. Zhang, and X. Zhang. 2014. Emodin inhibits LPS-induced inflammatory response by activating PPAR-γ in mouse mammary epithelial cells. International Immunopharmacology 21: 354–360.

    Article  CAS  PubMed  Google Scholar 

  10. Reuven, E.M., A. Fink, and Y. Shai. 2014. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochimica et Biophysica Acta 1838: 1586–1593.

    Article  CAS  PubMed  Google Scholar 

  11. Ariyadi, B., N. Isobe, and Y. Yoshimura. 2014. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina. Poultry Science 93: 673–679.

    Article  CAS  PubMed  Google Scholar 

  12. Kyriakis, John M., and Joseph Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81: 807–869.

    CAS  PubMed  Google Scholar 

  13. Lee, J.C., S. Kassis, S. Kumar, A. Badger, and J.L. Adams. 1999. p38 mitogen-activated protein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacology and Therapeutics 82: 389–397.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, W., D.J. Liang, X.J. Song, T. Wang, Y. Cao, Z. Yang, and N. Zhang. 2015. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflammation 38: 16–26.

    Article  CAS  Google Scholar 

  15. Kunikata, T., T. Tatefuji, H. Aga, K. Iwaki, M. Ikeda, and M. Kurimoto. 2000. Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. European Journal of Pharmacology 410: 93–100.

    Article  CAS  PubMed  Google Scholar 

  16. Ma, M.Z., and B.Y. Yao. 1983. Progress in indirubin treatment of chronic myelocytic leukemia. Journal of Traditional Chinese Medicine 3: 245–248.

    CAS  PubMed  Google Scholar 

  17. Blažević, T., E.H. Heiss, A.G. Atanasov, J.M. Breuss, V.M. Dirsch, and P. Uhrin. 2015. Indirubin and indirubin derivatives for counteracting proliferative diseases. Evidence-Based Complementary and Alternative Medicine 2015: 1–12.

    Google Scholar 

  18. Kim, J.K., E.K. Shin, Y.H. Kang, and J.H.Y. Park. 2011. Indirubin-3-monoxime, a derivative of a Chinese antileukemia medicine, inhibits angiogenesis. Journal of Cellular Biochemistry 112: 384–1391.

    Google Scholar 

  19. Ravichandran, K., A. Pal, and R. Ravichandran. 2010. Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microscopy Research and Technique 73: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  20. Perabo, F.G., G. Landwehrs, C. Frossler, D.H. Schmidt, and S.C. Mueller. 2011. Anti- proliferative and apoptosis inducing effects of indirubin-3-monoxime in renal cell cancer cells. Urologic Oncology 29: 815–820.

    Article  CAS  PubMed  Google Scholar 

  21. Varela, A.T., A.M. Simoes, J.S. Teodoro, F.V. Duarte, A.P. Gomes, C.M. Palmeira, and A.P. Rolo. 2010. Indirubin-3-oxime prevents hepatic I/R damage by inhibiting GSK-3beta and mitochondrial permeability transition. Mitochondrion 10: 456–463.

    Article  CAS  PubMed  Google Scholar 

  22. Polychronopoulos, P., P. Magiatis, A.L. Skaltsounis, V. Myrianthopoulos, E. Mikros, A. Tarricone, A. Musacchio, S.M. Roe, L. Pearl, M. Leost, P. Greengard, and L. Meijer. 2004. Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. Journal of Medicinal Chemistry 47: 935–946.

    Article  CAS  PubMed  Google Scholar 

  23. Li, D., N. Zhang, Y. Cao, W. Zhang, G. Su, Y. Sun, and M. Guo. 2013. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-kB and MAPKs signal pathways. European Journal of Pharmacology 705: 79–85.

    Article  CAS  PubMed  Google Scholar 

  24. Ip, M.M., P.A. Masso-Welch, S.F. Shoemaker, W.K. Shea-Eaton, and C. Ip. 1999. Conjugated linoleic acid inhibits proliferation and induces apoptosis of normal rat mammary epithelial cells in primary culture. Experimental Cell Research 250: 22–34.

    Article  CAS  PubMed  Google Scholar 

  25. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, S.T., J.Y. Li, Y. Zhang, X. Gao, and H. Cai. 2012. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. The Journal of Immunology 188: 668–677.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Q., Y. Yang, S. Yan, J. Liu, Z. Xu, J. Yu, and M. Jin. 2015. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway. Frontiers in Microbiology 6: 178.

    PubMed  PubMed Central  Google Scholar 

  28. Wang, T., M. Guo, X. Song, Z. Zhang, H. Jiang, W. Wang, and N. Zhang. 2014. Stevioside plays an anti-inflammatory role by regulating the NF-kB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation 37: 1837–1846.

    Article  CAS  PubMed  Google Scholar 

  29. Nayak, L., L. Goduni, Y. Takami, N. Sharma, P. Kapil, M.K. Jain, and G.H. Mahabeleshwar. 2013. Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation. The American Journal of Pathology 182: 1696–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, X., and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis causes and control. Journal of Animal Science 86: 57–65.

    Article  CAS  Google Scholar 

  31. Babra, C., J.G. Tiwari, G. Pier, T.H. Thein, R. Sunagar, S. Sundareshan, S. Isloor, Na R. Hegde, S. de Wet, M. Deighton, J. Gibson, P. Costantino, J. Wetherall, and T. Mukkur. 2013. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiologica 58: 469–474.

    Article  CAS  PubMed  Google Scholar 

  32. Senegas, A., O. Villard, A. Neuville, L. Marcellin, A.W. Pfaff, T. Steinmetz, M. Mousli, J.P. Klein, and E. Candolfi. 2009. Toxoplasma gondii-induced foetal resorption in mice involves interferon-mamma-induced apoptosis and spiral artery dilation at the matermofoetal interface. International Journal for Parasitology 39: 481–487.

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, K., H.S.W. Schaffer, and J. Azuma. 1992. Effect of taurine on intracellular calcium dynamics of cultured myocardial cells during the calcium paradox. Advances in Experimental Medicine and Biology 315: 153–161.

    Article  CAS  PubMed  Google Scholar 

  34. Li, F., D. Liang, Z. Yang, T. Wang, W. Wang, X. Song, M. Guo, E. Zhou, D. Li, Y. Cao, and N. Zhang. 2013. Astragalin suppresses inflammatory responses via down-regulation of NF-kB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. International Immunopharmacology 17: 478–482.

    Article  CAS  PubMed  Google Scholar 

  35. Song, X., W. Zhang, T. Wang, H. Jiang, Z. Zhang, Y. Fu, Z. Yang, Y. Cao, and N. Zhang. 2014. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathway in lipopolysaccharide-induced mastitis in mice. Inflammation 37: 1588–98.

    Article  CAS  PubMed  Google Scholar 

  36. Ding, Y., A. Qiao, and G.H. Fan. 2014. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates beta-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiology of Disease 39: 156–168.

    Article  Google Scholar 

  37. Hoessel, R., S. Leclerc, J.A. Endicott, et al. 1999. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biology 1: 60–67.

    Article  CAS  PubMed  Google Scholar 

  38. Higashimoto, T.A., C.L. Panopoulos, and E. Zandi. 2006. TNF alpha induces chromosomal abnormalities independent of ROS through IKK, JNK, p38 and caspase pathways. Cytokine 34: 39–50.

    Article  CAS  PubMed  Google Scholar 

  39. Yoon, W.J., J.Y. Moon, J.Y. Kang, N.H. Lee, and C.G. Hyun. 2010. Neolitsea sericea essential oil attenuates LPS-induced inflammation in RAW 264.7 macrophages by suppressing NF-kappa B and MAPK activation. Natural Product Communications 5: 1311–1316.

    CAS  PubMed  Google Scholar 

  40. Ho, A.W., C.K. Wong, and C.W. Lam. 2008. Tumor necrosis factor alpha up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways. Immunobiology 213: 533–544.

    Article  CAS  PubMed  Google Scholar 

  41. Shalaby, M.R., B.B. Aggarwal, E. Rinderknecht, L.P. Svedersky, B.S. Finkle, and M.A. Palladino Jr. 1985. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. Journal of Immunology 135: 2069–2073.

    CAS  Google Scholar 

  42. Morita, I. 2002. Distinct functions of COX-1 and COX-2. Prostaglandins & Other Lipid Mediators 68–69: 165–175.

    Article  Google Scholar 

  43. Strandberg, Y., C. Gray, T. Vuocolo, L. Donaldson, M. Broadway, and R. Tellam. 2005. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 1: 72–86.

    Article  Google Scholar 

  44. Duntas, L.H. 2009. Selenium and inflammation: underlying anti-inflammatory mechanisms. Hormone and Metabolic Research 41: 443–447.

    Article  CAS  PubMed  Google Scholar 

  45. Vunta, H., B.J. Belda, R.J. Arner, C. Channa Reddy, John P. Vanden Heuvel, and K. Sandeep Prabhu. 2008. Selenium attenuates pro-inflammatory gene expression in macrophages. Molecular Nutrition & Food Research 52: 1316–1323.

    Article  CAS  Google Scholar 

  46. Pfaffl, M.W., S.L. Wittmann, H.H. Meyer, and R.M. Bruckmaier. 2003. Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. Journal of Dairy Science 86: 538–545.

    Article  CAS  PubMed  Google Scholar 

  47. Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology 2: 675–680.

    Article  CAS  PubMed  Google Scholar 

  48. Beutler, B., K. Hoebe, X. Du, and R.J. Ulevitch. 2003. How we detect microbes and respond to them: the Toll-like receptors and their transducers. Journal of Leukocyte Biology 74: 479–485.

    Article  CAS  PubMed  Google Scholar 

  49. Vunta, H., F. Davis, U.D. Palempalli, D. Bhat, R.J. Arner, J.T. Thompson, and K.S. Prabhu. 2007. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12, 14-prostaglandin J2 in macrophages. Journal of Biological Chemistry 282: 17964–17973.

    Article  CAS  PubMed  Google Scholar 

  50. Oh, Y.C., W.K. Cho, Y.H. Jeong, G.Y. Im, A. Kim, Y.H. Hwang, and J.Y. Ma. 2012. A novel herbal medicine KIOM-MA exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophage cells. Evidence-Based Complementary and Alternative Medicine 2012: 1–11.

    Google Scholar 

  51. Hayden, M.S., and S. Ghosh. 2012. NF-kappa B, the first quarter-century: remarkable progress and outstanding questions. Genes and Development 6: 203–234.

    Article  Google Scholar 

  52. Vallabhapurapu, S., and M. Karin. 2009. Regulation and function of NF-kappa B transcription factors in the immune system. Annual Review of Immunology 27: 693–733.

    Article  CAS  PubMed  Google Scholar 

  53. Liang, C.J., C.W. Lee, H.C. Sung, Y.H. Chen, Y.C. Chiang, H.Y. Hsu, and Y.L. Chen. 2014. Ganoderma lucidum polysaccharides reduce lipopolysaccharide-induced interleukin-1β expression in cultured smooth muscle cells and in thoracic aortas in mice. Evidence-Based Complementary and Alternative Medicine 2014: 305149.

    PubMed  PubMed Central  Google Scholar 

  54. Remppis, A., F. Bea, H.J. Greten, A. Buttler, H. Wang, Q. Zhou, and E. Blessing. 2010. Rhizoma coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NF-kB-dependent pathway. Mediators of Inflammation 2010: 194896.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the Special Fund for China Agriculture Research System (Beef/Yak Cattle) (grant no. CARS-38); the Natural Science Foundation of Hubei Province, China (grant no. 2015CFB435); the National Natural Science Foundation of China (grant no. 31101874); and the Fundamental Research Funds for the Central Universities (grant nos. 2662015PY054 and 2662016PY015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-zhen Guo or Chang-min Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Jl., Liu, Yh., Liu, C. et al. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways. Inflammation 40, 1–12 (2017). https://doi.org/10.1007/s10753-016-0447-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0447-7

KEY WORDS

Navigation