Advertisement

Inflammation

, Volume 39, Issue 3, pp 1188–1197 | Cite as

Impaired Ca2+ Homeostasis and Decreased Orai1 Expression Modulates Arterial Hyporeactivity to Vasoconstrictors During Endotoxemia

  • Arthur Oliveira Nonato
  • Vania C. Olivon
  • Vanessa Dela Justina
  • Camila Z. Zanotto
  • R. Clinton Webb
  • Rita C. Tostes
  • Victor V. Lima
  • Fernanda R. GiachiniEmail author
ORIGINAL ARTICLE

ABSTRACT

We hypothesized that SIRS/endotoxemia-associated hyporesponsiveness to vasoconstrictors is mediated by smaller increases in intracellular Ca2+ levels due to reduced signaling via the STIM/Orai. Male Wistar rats were injected either with saline or bacterial LPS (i.p.; 10 mg/kg), and experiments were performed 24 h later. LPS-injected rats exhibited decreased systolic blood pressure, increased heart rate, neutrophils’ migration into the peritoneal cavity, and elevated alanine aminotransferase levels. Additionally, second-order mesenteric arteries from endotoxemic rats displayed hyporeactivity to contractile agents such as phenylephrine and potassium chloride; decreased contractile responses to Ca2+; reduced contraction during Ca2+ loading; and smaller intracellular Ca2+ stores. Decreased Orai1, but not STIM1, expression was found in resistance mesenteric arteries from LPS-treated rats. Additionally, cultured vascular smooth muscle cell (VSMC) treated with LPS resulted in increased TLR-4 expression, but Myd-88 and STIM-1 expression were not changed. Our data suggest that in endotoxemia, Ca2+ homeostasis is disrupted in VSMC, with decreased Ca2+ influx, smaller concentrations of Ca2+ in the sarcoplasmic reticulum, and decreased activation of Orai1. Abnormal Ca2+ handling contributes to LPS-associated vascular hyporeactivity.

KEY WORDS

vascular reactivity vascular smooth muscle cell calcium homeostasis hypotension 

Notes

ACKNOWLEDGMENTS

This work was supported in part by Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) [grant number 151371/2014 (to F.R.G.], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [grant number 23038009165/2013-48 (to V.V.L.], Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [grant number 2010/52214-6 (to R.C.T)], Conselho Nacional de Desenvolvimento Científico e Tecnológico [(CNPq) 471675/2013-0 and 305823/2015-9 (to F.R.G), 445777/2014-1 (V.V.L.)], and National Institutes of Health (NIH) [HL71138 and DK83685 (R.C.W)]. We would also like to thank all the technical staff, who have worked in our laboratories and contributed to the studies described here.

AUTHOR CONTRIBUTION

Fernanda Giachini and Victor Lima performed the vascular reactivity studies, in addition to being responsible for writing the paper. Vanessa Dela Justina conducted the cell culture. Arthur Nonato and Vanessa Dela Justina conducted Western blot analysis. Vania Olivon and Camila Zanotto conducted biochemistry analisys. Rita Tostes and Clinton Webb provided the animals used in the study and, along with Vania Olivon, continuously provided ideas and expertise for the project and revisions for the paper. Fernanda Giachini designed the hypothesis and supervised the entire study. All of the authors had full access to the data and take responsibility for its integrity and the accuracy of the analysis. All authors have read and agree to the paper as written.

References

  1. 1.
    Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150.CrossRefPubMedGoogle Scholar
  2. 2.
    Andreasen, A.S., K.S. Krabbe, R. Krogh-Madsen, S. Taudorf, B.K. Pedersen, and K. Moller. 2008. Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15: 1697–1705.CrossRefPubMedGoogle Scholar
  3. 3.
    Chierego, M., C. Verdant, and D. De Backer. 2006. Microcirculatory alterations in critically ill patients. Minerva Anestesiol 72: 199–205.PubMedGoogle Scholar
  4. 4.
    Christensen, K.L., and M.J. Mulvany. 2001. Location of resistance arteries. J Vasc Res 38: 1–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Spronk, P.E., D.F. Zandstra, and C. Ince. 2004. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8: 462–468.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Virdis, A., R. Colucci, M. Fornai, C. Blandizzi, E. Duranti, S. Pinto, et al. 2005. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J Pharmacol Exp Ther 312: 945–953.CrossRefPubMedGoogle Scholar
  7. 7.
    da Silva-Santos, J.E., C.W. Chiao, R. Leite, and R.C. Webb. 2009. The Rho-A/Rho-kinase pathway is up-regulated but remains inhibited by cyclic guanosine monophosphate-dependent mechanisms during endotoxemia in small mesenteric arteries. Crit Care Med 37: 1716–1723.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen, S.J., S.Y. Li, C.C. Shih, M.H. Liao, and C.C. Wu. 2010. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats. Shock 33: 473–478.CrossRefPubMedGoogle Scholar
  9. 9.
    Ding, Y.M., Q.X. Shan, X. Zhang, H.F. Jin, J. Du, and Q. Xia. 2003. NO/cGMP signal pathway involved in the disturbance of calcium homeostasis in vascular smooth muscle during the late phase of sepsis. Zhejiang Da Xue Xue Bao Yi Xue Ban 32: 514–518.PubMedGoogle Scholar
  10. 10.
    Ho, K.H., C.Y. Kwan, and J.P. Bourreau. 1996. Hyporesponsiveness to Ca2+ of aortic smooth muscle in endotoxin-treated rats: no-dependent and -independent in vitro mechanisms. Res Commun Mol Pathol Pharmacol 92: 275–284.PubMedGoogle Scholar
  11. 11.
    Dippold, R.P., and S.A. Fisher. 2014. Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation 21: 239–248.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Prakriya, M. 2013. Store-operated Orai channels: structure and function. Curr Top Membr 71: 1–32.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    DebRoy, A., S.M. Vogel, D. Soni, P.C. Sundivakkam, A.B. Malik, and C. Tiruppathi. 2014. Cooperative signaling via transcription factors NF-kappaB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin. J Biol Chem 289: 24188–24201.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, et al. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest 123: 887–902.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Karaki, H., H. Kubota, and N. Urakawa. 1979. Mobilization of stored calcium for phasic contraction induced by norepinephrine in rabbit aorta. Eur J Pharmacol 56: 237–245.CrossRefPubMedGoogle Scholar
  16. 16.
    Perry, P.A., and R.C. Webb. 1991. Agonist-sensitive calcium stores in arteries from steroid hypertensive rats. Hypertension 17: 603–611.CrossRefPubMedGoogle Scholar
  17. 17.
    Lima, V.V., F.F. Giachini, T. Matsumoto, W. Li, A.F. Bressan, D. Chawla, et al. 2016. High fat diet increases O-GlcNAc levels in cerebral arteries: a link to vascular dysfunction associated with hyperlipidemia/obesity? Clinical Science (London). doi: 10.1042/CS20150777.
  18. 18.
    De Backer, D., J. Creteur, J.C. Preiser, M.J. Dubois, and J.L. Vincent. 2002. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104.CrossRefPubMedGoogle Scholar
  19. 19.
    Edul, V.K., G. Ferrara, and A. Dubin. 2010. Microcirculatory dysfunction in sepsis. Endocr Metab Immune Disord Drug Targets 10: 235–246.CrossRefPubMedGoogle Scholar
  20. 20.
    Sakr, Y., M. Chierego, M. Piagnerelli, C. Verdant, M.J. Dubois, M. Koch, et al. 2007. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 35: 1639–1644.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, S., N. Cui, S. Li, L. Guo, Y. Wu, D. Zhu, et al. 2014. Interception of the endotoxin-induced arterial hyporeactivity to vasoconstrictors. Vascul Pharmacol 62: 15–23.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chiao, C.W., J.E. da Silva-Santos, F.R. Giachini, R.C. Tostes, M.J. Su, and R.C. Webb. 2013. P2X7 receptor activation contributes to an initial upstream mechanism of lipopolysaccharide-induced vascular dysfunction. Clin Sci (Lond) 125: 131–141.CrossRefGoogle Scholar
  23. 23.
    O’Brien, A.J., A.J. Wilson, R. Sibbald, M. Singer, and L.H. Clapp. 2001. Temporal variation in endotoxin-induced vascular hyporeactivity in a rat mesenteric artery organ culture model. Br J Pharmacol 133: 351–360.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mansart, A., P.E. Bollaert, P. Giummelly, C. Capdeville-Atkinson, and J. Atkinson. 2006. Effects of dexamethasone and L-canavanine on the intracellular calcium-contraction relation of the rat tail artery during septic shock. Am J Physiol Heart Circ Physiol 291: H1177–1182.CrossRefPubMedGoogle Scholar
  25. 25.
    Schlossmann, J., R. Feil, and F. Hofmann. 2003. Signaling through NO and cGMP-dependent protein kinases. Ann Med 35: 21–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Himpens, B., G. Matthijs, and A.P. Somlyo. 1989. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol 413: 489–503.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hassoun, S.M., X. Marechal, D. Montaigne, Y. Bouazza, B. Decoster, S. Lancel, et al. 2008. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 36: 2590–2596.CrossRefPubMedGoogle Scholar
  28. 28.
    Hobai, I.A., J. Edgecomb, K. LaBarge, and W.S. Colucci. 2015. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43: 3–15.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhu, X., O.Y. Bernecker, N.S. Manohar, R.J. Hajjar, J. Hellman, F. Ichinose, et al. 2005. Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 33: 598–604.CrossRefPubMedGoogle Scholar
  30. 30.
    Hobai, I.A., E.S. Buys, J.C. Morse, J. Edgecomb, E.H. Weiss, A.A. Armoundas, et al. 2013. SERCA Cys674 sulphonylation and inhibition of L-type Ca2+ influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis. Am J Physiol Heart Circ Physiol 305: H1189–1200.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sasaki, F., S. Osugi, K. Shimamura, and S. Sunano. 1993. Relationship between blood pressure and smooth muscle tone in aortae of hypertensive rats: roles of [Ca2+]. J Smooth Muscle Res 29: 69–79.CrossRefPubMedGoogle Scholar
  32. 32.
    Parekh, A.B., and J.W. Putney Jr. 2005. Store-operated calcium channels. Physiol Rev 85: 757–810.CrossRefPubMedGoogle Scholar
  33. 33.
    Vig, M., C. Peinelt, A. Beck, D.L. Koomoa, D. Rabah, M. Koblan-Huberson, et al. 2006. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312: 1220–1223.CrossRefPubMedGoogle Scholar
  34. 34.
    Kawasaki, T., I. Lange, and S. Feske. 2009. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385: 49–54.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shinde, A.V., R.K. Motiani, X. Zhang, I.F. Abdullaev, A.P. Adam, J.C. Gonzalez-Cobos, et al. 2013. STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6: ra18.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pozo-Guisado, E., and F.J. Martin-Romero. 2013. The regulation of STIM1 by phosphorylation. Commun Integr Biol 6: e26283.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Scirocco, A., P. Matarrese, C. Petitta, A. Cicenia, B. Ascione, C. Mannironi, et al. 2010. Exposure of Toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J Cell Physiol 223: 442–450.PubMedGoogle Scholar
  38. 38.
    Bomfim, G.F., R.A. Dos Santos, M.A. Oliveira, F.R. Giachini, E.H. Akamine, R.C. Tostes, et al. 2012. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond) 122: 535–543.CrossRefGoogle Scholar
  39. 39.
    Yang, X., D. Coriolan, V. Murthy, K. Schultz, D.T. Golenbock, and D. Beasley. 2005. Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling. Am J Physiol Heart Circ Physiol 289: H1069–1076.CrossRefPubMedGoogle Scholar
  40. 40.
    Yang, C., X. Mo, J. Lv, X. Liu, M. Yuan, M. Dong, et al. 2012. Lipopolysaccharide enhances FcepsilonRI-mediated mast cell degranulation by increasing Ca2+ entry through store-operated Ca2+ channels: implications for lipopolysaccharide exacerbating allergic asthma. Exp Physiol 97: 1315–1327.CrossRefPubMedGoogle Scholar
  41. 41.
    Sun, R., Z. Zhu, Q. Su, T. Li, and Q. Song. 2012. Toll-like receptor 4 is involved in bacterial endotoxin-induced endothelial cell injury and SOC-mediated calcium regulation. Cell Biol Int 36: 475–481.CrossRefPubMedGoogle Scholar
  42. 42.
    Tsai, T.Y., S.L. Lou, K.L. Wong, M.L. Wang, T.H. Su, Z.M. Liu, et al. 2015. Suppression of Ca(2+) influx in endotoxin-treated mouse cerebral cortex endothelial bEND.3 cells. Eur J Pharmacol 755: 80–87.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Arthur Oliveira Nonato
    • 1
  • Vania C. Olivon
    • 2
  • Vanessa Dela Justina
    • 1
  • Camila Z. Zanotto
    • 2
  • R. Clinton Webb
    • 3
  • Rita C. Tostes
    • 2
  • Victor V. Lima
    • 1
  • Fernanda R. Giachini
    • 1
    Email author
  1. 1.Institute of Biological and Health SciencesFederal University of Mato GrossoBarra do GarçasBrazil
  2. 2.Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
  3. 3.Department of PhysiologyAugusta UniversityAugustaUSA

Personalised recommendations