Skip to main content

Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells

Abstract

Citral is an active compound of lemongrass oil which has been reported to have anti-inflammatory effects. In this study, we investigated the effects of citral on lipopolysaccharide (LPS)-induced inflammatory response in a rat model of peritonitis and human umbilical vein endothelial cells (HUVECs). LPS was intraperitoneally injected into rats to establish a peritonitis model. The HUVECs were treated with citral for 12 h before exposure to LPS. The levels of TNF-α and IL-8 were measured using ELISA. Western blotting was used to detect the expression of VCAM-1, ICAM-1, NF-κB, and PPAR-γ. The results showed that citral had a protective effect against LPS-induced peritonitis. Citral decreased the levels of WBCs and inflammatory cytokines TNF-α and IL-6. Citral also inhibited LPS-induced myeloperoxidase (MPO) activity in the peritoneal tissue. Treatment of HUVECs with citral significantly inhibited TNF-α and IL-8 expression induced by LPS. LPS-induced VCAM-1 and ICAM-1 expression were also suppressed by citral. Meanwhile, we found that citral inhibited LPS-induced NF-κB activation in HUVECs. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, citral inhibits LPS-induced inflammatory response via activating PPAR-γ which attenuates NF-κB activation and inflammatory mediator production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. de Tena, J.G. 2005. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 353: 429–429.

    Article  Google Scholar 

  2. Welt, F.G.P., and C. Rogers. 2002. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol 22: 1769–1776.

    Article  CAS  PubMed  Google Scholar 

  3. Fuentes, E., F. Fuentes, V. Andres, O.M. Pello, J.F. de Mora, and I. Palomo. 2013. Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets 24: 255–262.

    Article  Google Scholar 

  4. Cai, L., Z. Wang, J.M. Meyer, A.L. Ji, and D.R. van der Westhuyzen. 2012. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. J Lipid Res 53: 1472–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chuang, Y.F., H.Y. Yang, T.L. Ko, Y.F. Hsu, J.R. Sheu, G. Ou, and M.J. Hsu. 2014. Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells. Biochem Pharmacol 88: 372–383.

    Article  CAS  PubMed  Google Scholar 

  6. Villacorta, L., L. Chang, S.R. Salvatore, T. Ichikawa, J.F. Zhang, D. Petrovic-Djergovic, L.Y. Jia, H. Carlsen, F.J. Schopfer, B.A. Freeman, and Y.E. Chen. 2013. Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovasc Res 98: 116–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y.H., Y.F. Gao, W.T. Yu, Z.E. Jiang, J.L. Qu, and K.X. Li. 2013. Lycopene protects against LPS-induced proinflammatory cytokine cascade in HUVECs. Pharmazie 68: 681–684.

    CAS  PubMed  Google Scholar 

  8. Liang, Q.L., F. Yu, X.D. Cui, J.A. Duan, Q.N. Wu, P. Nagarkatti, and D.P. Fan. 2013. Sparstolonin B suppresses lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Arch Pharm Res 36: 890–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song, X.M., Y. Chen, Y.J. Sun, B.Q. Lin, Y.S. Qin, H. Hui, Z.Y. Li, Q.D. You, N. Lu, and Q.L. Guo. 2012. Oroxylin A, a classical natural product, shows a novel inhibitory effect on angiogenesis induced by lipopolysaccharide. Pharmacol Rep 64: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  10. Dudai, N., Y. Weinstein, M. Krup, T. Rabinski, and R. Ofir. 2005. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med 71: 484–488.

    Article  CAS  PubMed  Google Scholar 

  11. Chaouki, W., D.Y. Leger, B. Liagre, J.L. Beneytout, and M. Hmamouchi. 2009. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Fundam Clin Pharmacol 23: 549–556.

    Article  CAS  PubMed  Google Scholar 

  12. Bachiega, T.F., and J.M. Sforcin. 2011. Lemongrass and citral effect on cytokines production by murine macrophages. J Ethnopharmacol 137: 909–913.

    Article  PubMed  Google Scholar 

  13. Yang, S.M., K.F. Hua, Y.C. Lin, A. Chen, J.M. Chang, L.K. Chao, C.L. Ho, and S.M. Ka. 2013. Citral is renoprotective for focal segmental glomerulosclerosis by inhibiting oxidative stress and apoptosis and activating Nrf2 pathway in mice. PloS One 8.

  14. Katsukawa, M., R. Nakata, Y. Takizawa, K. Hori, S. Takahashi, and H. Inoue. 1801. Citral, a component of lemongrass oil, activates PPARalpha and gamma and suppresses COX-2 expression. Biochim Biophys Acta 2010: 1214–1220.

    Google Scholar 

  15. Lee, H.J., H.S. Jeong, D.J. Kim, Y.H. Noh, D.Y. Yuk, and J.T. Hong. 2008. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-kappa B activation in RAW264.7 cells. Arch Pharm Res 31: 342–349.

    Article  CAS  PubMed  Google Scholar 

  16. Akeson, A.L., and C.W. Woods. 1993. A fluorometric assay for the quantitation of cell adherence to endothelial cells. J Immunol Methods 163: 181–185.

    Article  CAS  PubMed  Google Scholar 

  17. Zeiher, A.M., H. Drexler, H. Wollschlager, and H. Just. 1991. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83: 391–401.

    Article  CAS  PubMed  Google Scholar 

  18. Rao, R.M., L. Yang, G. Garcia-Cardena, and F.W. Luscinskas. 2007. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 101: 234–247.

    Article  CAS  PubMed  Google Scholar 

  19. Nomura, S., N.N. Tandon, T. Nakamura, J. Cone, S. Fukuhara, and J. Kambayashi. 2001. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 158: 277–287.

    Article  CAS  PubMed  Google Scholar 

  20. Sanadgol, N., A. Mostafaie, G. Bahrami, K. Mansouri, F. Ghanbari, and A. Bidmeshkipour. 2010. Elaidic acid sustains LPS and TNF-alpha induced ICAM-1 and VCAM-I expression on human bone marrow endothelial cells (HBMEC). Clin Biochem 43: 968–972.

    Article  CAS  PubMed  Google Scholar 

  21. Tedgui, A., and Z. Mallat. 2006. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86: 515–581.

    Article  CAS  PubMed  Google Scholar 

  22. Eleftheriadis, T., G. Antoniadi, V. Liakopoulos, C. Kartsios, I. Stefanidis, and G. Galaktidou. 2010. Paricalcitol reduces basal and lipopolysaccharide-induced (LPS) TNF-alpha and IL-8 production by human peripheral blood mononuclear cells. Int Urol Nephrol 42: 181–185.

    Article  CAS  PubMed  Google Scholar 

  23. Gerszten, R.E., E.A. Garcia-Zepeda, Y.C. Lim, M. Yoshida, H.A. Ding, M.A. Gimbrone Jr., A.D. Luster, F.W. Luscinskas, and A. Rosenzweig. 1999. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398: 718–723.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y.H., S.J. Lin, H.H. Ku, M.S. Shiao, F.Y. Lin, J.W. Chen, and Y.L. Chen. 2001. Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-alpha-treated human aortic endothelial cells. J Cell Biochem 82: 512–521.

    Article  CAS  PubMed  Google Scholar 

  25. Fu, Y.H., E.S. Zhou, Z.K. Wei, W. Wang, T.C. Wang, Z.T. Yang, and N.S. Zhang. 2014. Cyanidin-3-O-beta-glucoside ameliorates lipopolysaccharide-induced acute lung injury by reducing TLR4 recruitment into lipid rafts. Biochem Pharmacol 90: 126–134.

    Article  CAS  PubMed  Google Scholar 

  26. Hou, C.H., F.L. Lin, K.B. Tong, S.M. Hou, and J.F. Liu. 2014. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway. Biochem Pharmacol 89: 453–463.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L., Y. Xu, Q. Yu, Q. Sun, Y. Xu, Q. Gu, and X. Xu. 2014. H-RN, a novel antiangiogenic peptide derived from hepatocyte growth factor inhibits inflammation in vitro and in vivo through PI3K/AKT/IKK/NF-kappaB signal pathway. Biochem Pharmacol 89: 255–265.

    Article  CAS  PubMed  Google Scholar 

  28. Gyongyosi, A., I. Szatmari, A. Pap, B. Dezso, Z. Pos, L. Szeles, T. Varga, and L. Nagy. 2013. RDH10, RALDH2, and CRABP2 are required components of PPARgamma-directed ATRA synthesis and signaling in human dendritic cells. J Lipid Res 54: 2458–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campeau, P.M., O. Astapova, R. Martins, J. Bergeron, P. Couture, R.A. Hegele, T. Leff, and C. Gagne. 2012. Clinical and molecular characterization of a severe form of partial lipodystrophy expanding the phenotype of PPARgamma deficiency. J Lipid Res 53: 1968–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blanchard, P.G., W.T. Festuccia, V.P. Houde, P. St-Pierre, S. Brule, V. Turcotte, M. Cote, K. Bellmann, A. Marette, and Y. Deshaies. 2012. Major involvement of mTOR in the PPARgamma-induced stimulation of adipose tissue lipid uptake and fat accretion. J Lipid Res 53: 1117–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, X., H. Qin, Q. Shi, Y. Zhang, F. Zhou, H. Wu, S. Ding, Z. Niu, Y. Lu, and P. Shen. 2014. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARgamma. Biochem Pharmacol 89: 503–514.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, C., A.T. Ting, and B. Seed. 1998. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86.

    Article  CAS  PubMed  Google Scholar 

  33. Appel, S., V. Mirakaj, A. Bringmann, M.M. Weck, F. Grunebach, and P. Brossart. 2005. PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 106: 3888–3894.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the science and technology development plan of Henan province (No. 122300410184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Song.

Ethics declarations

The experiments were approved by the Zhengzhou University Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Zhao, H., Liu, J. et al. Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells. Inflammation 39, 663–671 (2016). https://doi.org/10.1007/s10753-015-0292-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0292-0

KEY WORDS

  • citral
  • human umbilical vein endothelial cells
  • peritonitis
  • NF-κB
  • PPAR-γ