Skip to main content
Log in

Renoprotective Effect of Humic Acid on Renal Ischemia-Reperfusion Injury: An Experimental Study in Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Humic acid is an antioxidant molecule used in agriculture and livestock breeding, as well as in medicine. Our aim was to investigate the potential renoprotective effects of humic acid in a renal ischemia reperfusion model. Twenty-one rats were randomly divided into three equal groups. Intraperitoneal serum or humic acid was injected at 1, 12, and 24 h. Non-ischemic group I was evaluated as sham. The left renal artery was clamped in serum (group II) and intraperitoneal humic acid (group III) to subject to left renal ischemic reperfusion procedure. Ischemia and reperfusion time was 60 min for each. Total antioxidant status, total oxidative status, oxidative stress index, and ischemia-modified albumin levels were analyzed biochemically from the serum samples. Kidneys were evaluated histopatologically and immunohistochemically. Biochemical results showed that total oxidative status, ischemia-modified albumin, and oxidative stress index levels were significantly decreased, but total antioxidant status was increased in the humic acid group (III) compared with the ischemia group (II) On histopathological examination, renal tubular dilatation, tubular cell damage and necrosis, dilatation of Bowman’s capsule, hyaline casts, and tubular cell spillage were decreased in the humic acid group (III) compared with the ischemia group (II). Immunohistochemical results showed that apoptosis was deteriorated in group III. Renal ischemia reperfusion injury was attenuated by humic acid administration. These observations indicate that humic acid may have a potential therapeutic effect on renal ischemia reperfusion injury by preventing oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hartenstein, R. 1981. Sludge decomposition and stabilization. Science 212(4496): 743–9.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y., J. Katan, A. Gamliel, T. Aviad, and M. Schnitzer. 2000. Involvement of soluble organic matter in increased plant growth in solarized soils. Biology and Fertility of Soils 32(1): 28–34.

    Article  CAS  Google Scholar 

  3. Efimova, I., S. Khil’ko, and O. Smirnova. 2012. Antioxidant activity of humic acids in radical-chain oxidation processes. Russian Journal of Applied Chemistry 85(9): 1351–4.

    Article  CAS  Google Scholar 

  4. Gostishcheva, M.V., M.V. Belousov, M.S. Yusubov, R.R. Ismatova, and S.E. Dmitruk. 2009. Comparative IR spectral characteristics of humic acids from peats of different origin in the Tomsk Area. Pharmaceutical Chemistry Journal 43: 418–21.

    Article  CAS  Google Scholar 

  5. Van Rensburg, C., J. Dekker, R. Weis, T.L. Smith, E. van Janse Rensburg, and J. Schneider. 2002. Investigation of the anti-HIV properties of oxihumate. Chemotherapy 48(3): 138–43.

    Article  PubMed  Google Scholar 

  6. Van Rensburg, C., A. Van Straten, and J. Dekker. 2000. An in vitro investigation of the antimicrobial activity of oxifulvic acid. Journal of Antimicrobial Chemotherapy 46(5): 853–4.

    Article  PubMed  Google Scholar 

  7. Vucskits, A., I. Hullár, A. Bersényi, E. Andrásofszky, M. Kulcsár, and J. Szabó. 2010. Effect of fulvic and humic acids on performance, immune response and thyroid function in rats. Journal of Animal Physiology and Animal Nutrition 94(6): 721–8.

    Article  CAS  PubMed  Google Scholar 

  8. Bar-Or, D., E. Lau, and J.V. Winkler. 2000. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—a preliminary report. Journal of Emergency Medicine 19(4): 311–5.

    Article  CAS  PubMed  Google Scholar 

  9. Erel, O. 2004. A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry 37(2): 112–9.

    Article  CAS  PubMed  Google Scholar 

  10. Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38(12): 1103–11.

    Article  CAS  PubMed  Google Scholar 

  11. McCord, J.M. 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine 108(8): 652–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ozturk, H., H. Ozturk, E.H. Terzi, U. Ozgen, A. Duran, and I. Uygun. 2014. Protective effects of Rosmarinic acid against renal ischaemia/reperfusion injury in rats. Journal of the Pakistan Medical Association 64(3): 260–5.

    PubMed  Google Scholar 

  13. Sinha, M., D. Roy, D. Gaze, P. Collinson, and J. Kaski. 2004. Role of “Ischemia modified albumin”, a new biochemical marker of myocardial ischaemia, in the early diagnosis of acute coronary syndromes. Emergency Medicine Journal 21(1): 29–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kocan, H., S. Citgez, U. Yucetas, et al. 2014. Can ischemia-modified albumin be used as an objective biomarker for renal ischemic damage? An experimental study with Wistar albino rats. Transplantation Proceedings 46(10): 3326–9.

    Article  CAS  PubMed  Google Scholar 

  15. Packer, J.E., T.F. Slater, and R.L. Willson. 1979. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278(5706): 737–738.

    Article  CAS  PubMed  Google Scholar 

  16. Stocker, R., M.J. Weidemann, and N.H. Hunt. 1986. Possible mechanisms responsible for the increased ascorbic acid content of Plasmodium vinckei-infected mouse erythrocytes. Biochimica et Biophysica Acta 881(3): 391–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hu, H., C. Zou, X. Xi, et al. 2012. Protective effects of pioglitazone on renal ischemia-reperfusion injury in mice. Journal of Surgical Research 178(1): 460–5.

    Article  CAS  PubMed  Google Scholar 

  18. Zou, C., H. Hu, X. Xi, Z. Shi, G. Wang, and X. Huang. 2013. Pioglitazone protects against renal ischemia-reperfusion injury by enhancing antioxidant capacity. Journal of Surgical Research 184(2): 1092–5.

    Article  CAS  PubMed  Google Scholar 

  19. Nohl, H., L. Gille, and K. Staniek. 2005. Intracellular generation of reactive oxygen species by mitochondria. Biochemical Pharmacology 69(5): 719–23.

    Article  CAS  PubMed  Google Scholar 

  20. Kosecik, M., O. Erel, E. Sevinc, and S. Selek. 2005. Increased oxidative stress in children exposed to passive smoking. International Journal of Cardiology 100(1): 61–4.

    Article  PubMed  Google Scholar 

  21. Ceylan, E., A. Gülsün, M. Gencer, and N. Aksoy. 2005. A new parameter in the detection of tuberculosis activity: reactive oxygen metabolites. Respiration 72(2): 156–9.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura, K., H. Endo, and S. Kashiwazaki. 1986. Serum oxidation activities and rheumatoid arthritis. International Journal of Tissue Reactions 9(4): 307–16.

    Google Scholar 

  23. Ozkan, A., H.M. Sen, I. Sehitoglu, et al. 2015. Neuroprotective effect of humic acid on focal cerebral ischemia injury: an experimental study in rats. Inflammation 38(1): 32–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund of Çanakkale Onsekiz Mart University. Project Number 159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpaslan Akbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbas, A., Silan, C., Gulpinar, M.T. et al. Renoprotective Effect of Humic Acid on Renal Ischemia-Reperfusion Injury: An Experimental Study in Rats. Inflammation 38, 2042–2048 (2015). https://doi.org/10.1007/s10753-015-0185-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0185-2

KEY WORDS

Navigation