Skip to main content
Log in

Mast Cells Kill Candida albicans in the Extracellular Environment but Spare Ingested Fungi from Death

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Mast cells (MCs) reside in tissues that are common targets of Candida spp. infections, and can exert bactericidal activity, but little is known about their fungicidal activity. MCs purified from rat peritoneum (RPMC) and a clinical isolate of C. albicans, were employed. Ingestion was evaluated by flow cytometry (FACS) and optical microscopy. The killing activity was assayed by FACS analysis and by colony forming unit method. RPMC degranulation was evaluated by β-hexosaminidase assay and phosphatidylserine externalization by FACS. Phagocytosing RPMC were also analyzed by transmission electron microscopy. Herein, we show that the killing of C. albicans by RPMC takes place in the extracellular environment, very likely through secreted granular components. Ultrastructural analysis of the ingestion process revealed an unusual RPMC–C. albicans interaction that could allow fungal survival. Our findings indicate that MCs have a positive role in the defense mechanism against Candida infections and should be included among the cell types involved in host-defense against this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown, G.D., and M.G. Netea. 2007. Immunology of fungal infections. Dordrecht: Springer.

    Book  Google Scholar 

  2. Smeekens, S.P., F.L. van de Veerdonk, B.J. Kullberg, and M.G. Netea. 2013. Genetic susceptibility to Candida infections. EMBO Molecular Medicine 5(6): 805–813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gow, N.A., F.L. van de Veerdonk, A.J. Brown, and M.G. Netea. 2011. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nature Reviews Microbiology 10: 112–122.

    PubMed Central  PubMed  Google Scholar 

  4. Cheng, S.C., L.A. Joosten, B.J. Kullberg, and M.G. Netea. 2012. Interplay between Candida albicans and the mammalian innate host defense. Infection and Immunity 80(4): 1304–1313.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Miramón, P., L. Kasper, and B. Hube. 2013. Thriving within the host: Candida spp. interactions with phagocytic cells. Medical Microbiology and Immunology 202: 183–195.

    Article  PubMed  Google Scholar 

  6. Kullberg, B.J., M.G. Netea, A.G. Vonk, and J.W. van der Meer. 1999. Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. Immunology and Medical Microbiology 26: 299–307.

    Article  CAS  PubMed  Google Scholar 

  7. Fernández-Arenas, E., C.K. Bleck, C. Nombela, C. Gil, G. Griffiths, and R. Diez-Orejas. 2009. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cellular Microbiology 11: 560–589.

    Article  PubMed  Google Scholar 

  8. Saluja, R., M. Metz, and M. Maurer. 2012. Role and relevance of mast cells in fungal infections. Frontiers in Immunology 3: 1–11.

    Article  Google Scholar 

  9. Urb, M., and D.C. Sheppard. 2012. The role of mast cells in the defence against pathogens. PLoS Pathogens 8: e1002619.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Frossi, B., M. De Carli, and C. Pucillo. 2004. The mast cell: An antenna of the microenvironment that directs the immune response. Journal of Leukocyte Biology 75: 579–585.

    Article  CAS  PubMed  Google Scholar 

  11. Hofmann, A.M., and S.N. Abraham. 2009. New roles for MC in modulating allergic reaction and immunity against pathogens. Current Opinion in Immunology 21: 679–686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. St John, A.L., and S.N. Abraham. 2013. Innate immunity and its regulation by mast cells. Journal of Immunology 190: 4458–4463.

    Article  CAS  Google Scholar 

  13. Féger, F., S. Varadaradjalou, Z. Gao, S.N. Abraham, and M. Arock. 2002. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends in Immunology 23: 151–158.

    Article  PubMed  Google Scholar 

  14. Gekara, N.O., and S. Weiss. 2008. Mast cells initiate early anti-Listeria host defences. Cellular Microbiology 10: 225–236.

    CAS  PubMed  Google Scholar 

  15. Malaviya, R., N.J. Twesten, E.A. Ross, S.N. Abraham, and J.D. Pfeifer. 1996. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. Journal of Immunology 156: 1490–1496.

    CAS  Google Scholar 

  16. Suurmond, J., J. van Heemst, J. van Heiningen, A.L. Dorjée, M.W. Schilham, F.B. van der Beek, T.W. Huizinga, and A.J.R.E. Schuerwegh Toes. 2013. Communication between human mast cells and CD4(+) T cells through antigen-dependent interactions. European Journal of Immunology 43: 1758–1768.

    Article  CAS  PubMed  Google Scholar 

  17. Di Nardo, A., A. Vitiello, and R.L. Gallo. 2003. Cutting edge: Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. Journal of Immunology 170: 2274–2278.

    Article  Google Scholar 

  18. Den Hertog, A.L., J. van Marle, H.A. van Veen, W. Van't Hof, J.G. Bolscher, E.C. Veerman, and A.V. Nieuw Amerongen. 2005. Candidacidal effects of two antimicrobial peptides: Histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. The Biochemical Journal 1: 689–695.

    Google Scholar 

  19. Den Hertog, A.L., J. Van Marle, H.A. Van Veen, W. Van't Hof, J.G. Bolscher, E.C. Veerman, A.V. Nieuw Amerongen, P.W. Tsai, C.Y. Yang, H.T. Chang, and C.Y. Lan. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PloS One 14: e17755.

    Google Scholar 

  20. von Köckritz-Blickwede, M., O. Goldmann, P. Thulin, K. Heinemann, A. Norrby-Teglund, M. Rohde, and E. Medina. 2008. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111: 3070–3080.

    Article  Google Scholar 

  21. Malaviya, R., E.A. Ross, J.I. MacGregor, T. Ikeda, J.R. Little, B.A. Jakschik, and S.N. Abraham. 1994. Mast cell phagocytosis of FimH-expressing enterobacteria. Journal of Immunology 15(152): 1907–1914.

    Google Scholar 

  22. Arock, M., E. Ross, R. Lai-Kuen, G. Averlant, Z. Gao, and S.N. Abraham. 1998. Phagocytic and tumor necrosis factor alpha response of human mast cells following exposure to gram-negative and gram-positive bacteria. Infection and Immunity 66: 6030–6034.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Wei, O.L., A. Hilliard, D. Kalman, and M. Sherman. 2005. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infection and Immunity 73: 1978–1985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Padawer, J., and G.J. Fruhman. 1968. Phagocytosis of zymosan particles by mast cells. Experientia 15(24): 471–472.

    Article  Google Scholar 

  25. Padawer, J. 1971. Poxvirus phagocytosis in vivo: Electron microscopy of macrophages, mast cells, and leukocytes. Journal of the Reticuloendothelial Society 9: 23–41.

    CAS  PubMed  Google Scholar 

  26. Fruhman, G.J. 1973. In vitro ingestion of zymosan particles by mast cells. Journal of the Reticuloendothelial Society 13: 424–435.

    CAS  PubMed  Google Scholar 

  27. Malaviya, R., T. Ikeda, E.A. Ross, B.A. Jakschik, and S.N. Abraham. 1995. Bacteria–mast cell interactions in inflammatory disease. American Journal of Therapy 2: 787–792.

    Article  Google Scholar 

  28. Sher, A., A. Hein, G. Moser, and J.P. Caulfield. 1979. Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cell. Laboratory Investigation 41: 490–499.

    CAS  PubMed  Google Scholar 

  29. Katz, H.R., M.B. Raizman, C.S. Gartner, H.C. Scott, A.C. Benson, and K.F. Austen. 1992. Secretory granule mediator release and generation of oxidative metabolites of arachidonic acid via Fc-IgG receptor bridging in mouse mast cells. Journal of Immunology 148: 868–871.

    CAS  Google Scholar 

  30. Otani, I., D.H. Conrad, J.R. Carlo, D.M. Segal, and S. Ruddy. 1982. Phagocytosis by rat peritoneal mast cells: Independence of IgG Fc-mediated and C3-mediated signals. Journal of Immunology 129: 2109–2112.

    CAS  Google Scholar 

  31. Baorto, D.M., Z. Gao, R. Malaviya, M.L. Dustin, A. van der Merwe, D.M. Lublin, and S.N. Abraham. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389: 636–639.

    Article  CAS  PubMed  Google Scholar 

  32. Shin, J.S., Z. Gao, and S.N. Abraham. 1999. Bacteria–host cell interaction mediated by cellular cholesterol/glycolipid-enriched microdomains. Bioscience Reports 19: 421–432.

    Article  CAS  PubMed  Google Scholar 

  33. Shin, J.S., Z. Gao, and S.N. Abraham. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289: 785–788.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenkranz, A.R., A. Coxon, M. Maurer, M.F. Gurish, K.F. Austen, D.S. Friend, S.J. Galli, and T.N. Mayadas. 1998. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. Journal of Immunology 15(161): 6463–6467.

    Google Scholar 

  35. Olynych, T.J., D.L. Jakeman, and J.S. Marshall. 2006. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. The Journal of Allergy and Clinical Immunology 118: 837–843.

    Article  CAS  PubMed  Google Scholar 

  36. Malbec, O., and M. Daeron. 2007. The mast cells IgG receptors and their role in tissue inflammation. Immunological Reviews 217: 206–221.

    Article  CAS  PubMed  Google Scholar 

  37. Kalesnikoff, J., and S.J. Galli. 2008. New developments in mast cell biology. Nature Immunology 9: 1215–1223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Suzuki, Y., T. Inoue, T. Yoshimaru, and C. Ra. 2008. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochimica et Biophysica Acta 1783: 924–934.

    Article  CAS  PubMed  Google Scholar 

  39. Netea, M.G., and L. Maródi. 2010. Innate immune mechanisms for recognition and uptake of Candida species. Trends in Immunology 31: 346–353.

    Article  CAS  PubMed  Google Scholar 

  40. Pietrzak, A., M. Wierzbicki, M. Wiktorska, and E. Brzezińska-Błaszczyk. 2011. Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators of Inflammation 2: 1–11.

    Article  Google Scholar 

  41. Nosál, R. 1974. Histamine release from isolated rat mast cells due to glycoprotein from Candida albicans in vitro. Journal of Hygiene, Epidemiology, Microbiology, and Immunology 18(3): 377–378.

    PubMed  Google Scholar 

  42. Yamaguchi, N., R. Sugita, A. Miki, N. Takemura, J. Kawabata, J. Watanabe, and K. Sonoyama. 2006. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 55: 954–960.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Medic, N., F. Vita, R. Abbate, M.R. Soranzo, S. Pacor, E. Fabbretti, V. Borelli, and G. Zabucchi. 2008. Mast cell activation by myelin through scavenger receptor. Journal of Neuroimmunology 200: 27–40.

    Article  CAS  PubMed  Google Scholar 

  44. Busetto, S., E. Trevisan, P. Patriarca, and R. Menegazzi. 2004. A single-step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested Candida albicans in phagocytosing neutrophils. Cytometry 58: 201–206.

    Article  PubMed  Google Scholar 

  45. Borelli, V., F. Vita, M.R. Soranzo, E. Banfi, and G. Zabucchi. 2002. Ultrastructure of the interaction between Mycobacterium tuberculosis-H37Rv-containing phagosomes and the lysosomal compartment in human alveolar macrophages. Experimental and Molecular Pathology 73: 128–134.

    Article  CAS  PubMed  Google Scholar 

  46. Dri, P., M.R. Soranzo, R. Cramer, R. Menegazzi, V. Miotti, and P. Patriarca. 1985. Role of myeloperoxidase in respiratory burst of human polymorphonuclear leukocytes. Studies with myeloperoxidase-deficient subjects. Inflammation 9: 21–31.

    Article  CAS  PubMed  Google Scholar 

  47. Bjerknes, R. 1984. Flow cytometric assay for combined measurement of phagocytosis and intracellular killing of Candida albicans. Journal of Immunological Methods 72: 229–241.

    Article  CAS  PubMed  Google Scholar 

  48. Decleva, E., R. Menegazzi, S. Busetto, P. Patriarca, and P. Dri. 2006. Common methodology is inadequate for studies on the microbicidal activity of neutrophils. Journal of Leukocyte Biology 79: 87–94.

    Article  CAS  PubMed  Google Scholar 

  49. Menegazzi, R., R. Cramer, P. Patriarca, P. Scheurich, and P. Dri. 1994. Evidence that tumor necrosis factor alpha (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood 84: 287–293.

    CAS  PubMed  Google Scholar 

  50. Martin, S., I. Pombo, P. Poncet, B. David, M. Arock, and U. Blank. 2000. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. International Archives of Allergy and Immunology 123: 249–258.

    Article  CAS  PubMed  Google Scholar 

  51. Saresella, M., K. Roda, L. Speciale, D. Taramelli, E. Mendozzi, F. Guerini, and P. Ferrante. 1997. A rapid evaluation of phagocytosis and killing of Candida albicans by CD13+ leukocytes. Journal of Immunological Methods 210(2): 227–234.

    Article  CAS  PubMed  Google Scholar 

  52. Blank, U. 2011. The mechanisms of exocytosis in mast cells. Advances in Experimental Medicine and Biology 716: 107–122.

    Article  CAS  PubMed  Google Scholar 

  53. Swindle, E.J., and D.D. Metcalfe. 2007. The role of reactive oxygen species and nitric oxide in mast cell dependent inflammatory processes. Immunological Reviews 217: 186–205.

    Article  CAS  PubMed  Google Scholar 

  54. Marquis, G., S. Garzon, S. Montplaisir, H. Strykowski, and N. Benhamou. 1991. Histochemical and immunochemical study of the fate of Candida albicans inside human neutrophil phagolysosomes. Journal of Leukocyte Biology 50(6): 587–599.

    CAS  PubMed  Google Scholar 

  55. Busetto, S., E. Trevisan, E. Decleva, P. Dri, and R. Menegazzi. 2007. Chloride movements in human neutrophils during phagocytosis: Characterization and relationship to granule release. Journal of Immunology 15(179): 4110–4124.

    Article  Google Scholar 

  56. Abel, J., O. Goldmann, C. Ziegler, C. Höltje, M.S. Smeltzer, A.L. Cheung, D. Bruhn, M. Rohde, and E. Medina. 2011. Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake. Journal of Innate Immunity 3: 495–507.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Marie Curie Early Stage Research Training Fellowship of the European Community's Sixth Framework Programme, under contract number 504926 and the University of Trieste. The Foundation Foreman Casali (Trieste, Italy) and Consorzio per lo Sviluppo Internazionale dell’Università degli Studi di Trieste (CSIUT) awarded a fellowship to Nevenka Medic. We would like to thank Dr. Alessandra Knowles for her assistance in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violetta Borelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisan, E., Vita, F., Medic, N. et al. Mast Cells Kill Candida albicans in the Extracellular Environment but Spare Ingested Fungi from Death. Inflammation 37, 2174–2189 (2014). https://doi.org/10.1007/s10753-014-9951-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9951-9

KEY WORDS

Navigation