Inflammation

, Volume 37, Issue 4, pp 1297–1306 | Cite as

Anti-inflammatory Potential of Alpha-Linolenic Acid Mediated Through Selective COX Inhibition: Computational and Experimental Data

Article

Abstract

The present work investigates the anti-inflammatory activity of alpha-linolenic acid (ALA) and linoleic acid (LA) using computational and experimental analysis. The binding affinity of ALA and LA was appraised for cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), and 5-lipoxygenase (5-LOX) using AutoDock 4.2 and AutoDock Vina 1.1.2. Anti-inflammatory activity of ALA (2 and 4 ml/kg, i.p.) (55.65 % v/v) and LA (2 and 4 ml/kg, i.p.) (55 % v/v) was further assayed using the rat paw edema test against a variety of phlogistic agents including carrageenan, arachidonic acid, prostaglandin, and leukotriene, respectively. ALA (2 and 4 ml/kg, i.p.) and LA (2 and 4 ml/kg, i.p.) were further tested for their efficacy against complete Freund’s adjuvant (CFA)-induced (0.05 ml) arthritis in albino rats. Following CFA-induced arthritis, ALA and LA were tested for their inhibitory proficiency against COX-1, COX-2, and 5-LOX in vitro. The present study commends that the anti-inflammatory potential of ALA could be attributed to COX inhibition, in particular, COX-2.

KEY WORDS

alpha-linolenic acid computational docking cyclooxygenase inflammation linoleic acid lipoxygenase structure-based docking 

Supplementary material

10753_2014_9857_MOESM1_ESM.docx (23 kb)
Supplementary Figure I(DOCX 22 kb)
10753_2014_9857_MOESM2_ESM.docx (61 kb)
Supplementary Figure II(DOCX 60 kb)
10753_2014_9857_MOESM3_ESM.docx (14 kb)
Supplementary Table I(DOCX 14 kb)
10753_2014_9857_MOESM4_ESM.docx (15 kb)
Supplementary Table II(DOCX 15 kb)

References

  1. 1.
    Enig, M.G. 2005. Know your fats, 249. Bethesda: Silver Spring.Google Scholar
  2. 2.
    Cunnane, S.C. 2003. Problems with essential fatty acids: time for a new paradigm. Progress in Lipid Research 42(6): 544–568.PubMedCrossRefGoogle Scholar
  3. 3.
    Piomelli, Daniele 2000. Arachidonic acid. Neuropsychopharmacology: The fifth generation of progress. http://www.acnp.org/g4/GN401000059/Default.htm. Accessed 25 July 2013.
  4. 4.
    Johnson, M.M., D.D. Swan, M.E. Surette, J. Stegner, T. Chilton, A.N. Fonteh, and F.H. Chilton. 1997. Dietary supplementation with gamma-linolenic acid alters fatty acid content and eicosanoid production in healthy humans. Journal of Nutrition 127(8): 1435–1444.PubMedGoogle Scholar
  5. 5.
    Chang, C.S., H.L. Sun, C.K. Lii, H.W. Chen, P.Y. Chen, and K.L. Liu. 2010. Gamma-linolenic acid inhibits inflammatory response by regulating NF-κB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 33(1): 46–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Hontecillas, R., M. O’Shea, A. Einerhand, M. Diguardo, and J. Bassaganya-Riera. 2009. Activation of PPAR gamma and alpha by punicinic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. Journal of the American College of Nutrition 28(2): 184–195.PubMedCrossRefGoogle Scholar
  7. 7.
    Serhan, N.C. 2006. Resolvins and protectins: novel lipid mediators in anti-inflammation and resolution. Scandinavian Journal of Food and Nutrition 50(S2): 68–78.CrossRefGoogle Scholar
  8. 8.
    Ziboh, V.A., S. Naguwa, K. Vang, J. Wineinger, B.M. Morrissey, M. Watnik, and M.E. Gershwin. 2004. Suppression of leukotriene B4 generation by ex-vivo neutrophils isolated from asthma patients on dietary supplementation with gamma linolenic acid-containing borage oil: possible implication in asthma. Clinical and Developmental Immunology 11(1): 13–21.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Calder, C.P. 2006. n-3 polyunsaturated fatty acids, inflammation and inflammatory diseases. American Journal of Clinical Nutrition 83: 1505–1519.Google Scholar
  10. 10.
    Russo, L.G. 2009. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochemical Pharmacology 77: 937–946.PubMedCrossRefGoogle Scholar
  11. 11.
    Kapoor, R., and Y.S. Huang. 2006. Gamma linolenic acid: an anti-inflammatory omega-6 fatty acids. Current Pharmaceutical Biotechnology 7(6): 531–534.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaithwas, G., and D.K. Majumdar. 2010. Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats. Inflammopharmacology 18: 127–136.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaithwas, G., A. Mukherjee, A.K. Chaurasia, and D.K. Majumdar. 2011. Anti-inflammatory, analgesic and antipyretic activities of Linum usitatissimum L. (flaxseed/linseed) fixed oil. Indian Journal of Experimental Biology 49(12): 9.Google Scholar
  14. 14.
    Kaithwas, G., and D.K. Majumdar. 2013. Effect of L. usitatissimum: (flaxseed/linseed) fixed oil against distinct phases of inflammation. ISRN Inflammation 2013: 1–4.CrossRefGoogle Scholar
  15. 15.
    Kaithwas, G., A. Mukerjee, P. Kumar, and D.K. Majumdar. 2011. Linum usitatissimum (linseed/flaxseed) fixed oil: antimicrobial activity and efficacy in Bovine mastitis. Inflammapharmacology 19(1): 45–52.CrossRefGoogle Scholar
  16. 16.
    Pruitt, K.D., T. Tatusova, W. Klimke, and D.R. Maglott. 2009. NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Research 37: 32–36.CrossRefGoogle Scholar
  17. 17.
    Chen, C.C., J.K. Hwang, and J.M. Yang. 2006. (PS)2: protein structure prediction server. Nucleic Acids Research 34: 152–157.CrossRefGoogle Scholar
  18. 18.
    Bates, P.A., L.A. Kelley, R.M. MacCalum, and M.J.E. Sternberg. 2001. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5: 39–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Contreras, M.B., and P.A. Bates. 2002. Domain fishing: a first step in protein comparative modeling. Bioinformatics 18: 1141–1142.CrossRefGoogle Scholar
  20. 20.
    Hung, L.H., S.C. Ngan, T. Liu, and R. Samudrala. 2005. PROTINFO: new algorithms for enhanced protein structure prediction. Nucleic Acids Research 33: 77–80.CrossRefGoogle Scholar
  21. 21.
    Martí-Renom, M.A., A.C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. 2000. Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure 29: 291–325.PubMedCrossRefGoogle Scholar
  22. 22.
    Colovos, C., and T.O. Yeates. 1993. Verification of protein structures: patterns of non-bonded atomic interactions. Protein Science 2: 1511–1519.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Guex, N., and M.C. Peitsch. 1996. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.CrossRefGoogle Scholar
  24. 24.
    Trott, O., and A.J. Olson. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multi threading. Journal of Computational Chemistry 31: 455–461.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Winter, C.A., E.A. Risley, and G.W. Nuss. 1962. Carrageenan-induced edema in rat paw as an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547.PubMedCrossRefGoogle Scholar
  26. 26.
    Newbould, B.B. 1963. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. British Journal of Pharmacology and Chemotherapy 21: 127–136.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson. 2009. AutoDock4 and AutoDock Tools 4: automated docking with selective receptor flexibility. Journal of Computational Chemistry 16: 2785–2791.CrossRefGoogle Scholar
  28. 28.
    Hardman, J.G., and L.E. Limbird. 2001. Goodman & Gillman’s the pharmacological basis of therapeutics. New York: McGraw-Hill.Google Scholar
  29. 29.
    Henderson, B., E.R. Pettipher, and G.A. Higgs. 1987. Mediators of rheumatoid arthritis. British Medical Bulletin 43(2): 415–428.PubMedGoogle Scholar
  30. 30.
    Feldmann, M., and R.N. Maini. 1999. The role of cytokines in the pathogenesis of rheumatoid arthritis. Rheumatology 38(2): 3–7.PubMedGoogle Scholar
  31. 31.
    Rang, H.P., M.M. Dale, J.M. Ritter, and K. Moore. 2003. Pharmacology, 5th ed, 217–243. Edinburg: Churchill Livingstone.Google Scholar
  32. 32.
    Kaneko, M., T. Tomita, T. Nakase, Y. Ohsawa, H. Seki, E. Takeuchi, et al. 2001. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint in rheumatoid arthritis. Rheumatology 40: 247–255.PubMedCrossRefGoogle Scholar
  33. 33.
    Arend, W.P., and J.M. Dayer. 1995. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor-α in rheumatoid arthritis. Arthritis and Rheumatism 38: 151–160.PubMedCrossRefGoogle Scholar
  34. 34.
    Dayer, J.M., and H. Fenner. 1992. The role of cytokines and their inhibitors in arthritis. Baillieres Clinical Rheumatology 6: 485–516.CrossRefGoogle Scholar
  35. 35.
    Moreland, L.W., M.H. Schiff, S.W. Baumgartner, E.A. Tindall, R.M. Fleisch-mann, K. Bulpitt, et al. 1999. Etanercept therapy in rheumatoid arthritis: a randomized controlled trial. Annals of Internal Medicine 130: 478–486.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Applied Sciences and Indo-Russian Centre for BiotechnologyIndian Institute of Information TechnologyAllahabadIndia
  2. 2.Department of Pharmaceutical SciencesBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia

Personalised recommendations