Skip to main content

Advertisement

Log in

Protective Effects of BML-111 on Cerulein-Induced Acute Pancreatitis-Associated Lung Injury via Activation of Nrf2/ARE Signaling Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether BML-111 can exert protective effects on cerulein-induced acute pancreatitis-associated lung injury (APALI) via activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) signaling pathway. Severe acute pancreatitis (SAP) was established by intraperitoneal injection of cerulein (50 μg/kg) seven times at hourly intervals and Escherichia coli lipopolysaccharide (10 mg/kg) once after the last dose of cerulein immediately. BML-111 (1 mg/kg) was administered 1 h before the first injection of cerulein. Samples were taken at 3, 6, 12, and 24 h after the last injection. Pathologic lesions of the pancreas and lung tissues as well as the levels of serum amylase were analyzed; Myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) of lung tissue were determined. The findings revealed that the injuries of pancreas and lung were typically induced by cerulein. The administration of BML-111 reduced the levels of serum amylase, lung MPO, lung MDA, the wet-to-dry weight ratio, and the pathology injury scores of the lung and pancreas, which increased in the SAP group. The expressions of Nrf2, HO-1, NQO1, and activity of SOD in lung tissue increased in the BML-111 group compared with those in the SAP group. This study indicates that BML-111 may play a critical protective role in APALI induced by cerulein. The underlying mechanisms of protective role may be attributable to its antioxidant effects through the activation of Nrf2/ARE pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Papachristou, G.I. 2008. Prediction of severe acute pancreatitis: current knowledge and novel insights. World Journal of Gastroenterology 14: 6273–6275.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bradley E.L. 3rd. 1993. A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, GA, September 11 through 13, 1992. Archives of Surgery 128(5): 586–590.

    Article  PubMed  Google Scholar 

  3. Shen, H.N., and C.L. Lu. 2011. Incidence, resource use, and outcome of acute pancreatitis with/without intensive care: a nationwide population-based study in Taiwan. Pancreas 40: 10–15.

    Article  CAS  PubMed  Google Scholar 

  4. Andersson, R., B. Andersson, P. Haraldsen, et al. 2004. Incidence, management and recurrence rate of acute pancreatitis. Scandinavian Journal of Gastroenterology 39: 891–894.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X., Z. Cui, J. Zhang, et al. 2010. Early predictive factors of in hospital mortality in patients with severe acute pancreatitis. Pancreas 39: 114–115.

    Article  PubMed  Google Scholar 

  6. Barreto, S.G., and J. Rodrigues. 2008. Acute pancreatitis in Goa—a hospital-based study. J Indian Med Assoc 106: 575–576. 578.

    CAS  PubMed  Google Scholar 

  7. Pereda, J., L. Sabater, L. Aparisi, et al. 2006. Interaction between cytokines and oxidative stress in acute pancreatitis. Current Medicinal Chemistry 13: 2775–2787.

    Article  CAS  PubMed  Google Scholar 

  8. Que, R.S., L.P. Cao, G.P. Ding, et al. 2010. Correlation of nitric oxide and other free radicals with the severity of acute pancreatitis and complicated systemic inflammatory response syndrome. Pancreas 39: 536–540.

    Article  CAS  PubMed  Google Scholar 

  9. Tsushima, K., L.S. King, N.R. Aggarwal, et al. 2009. Acute lung injury review. Internal Medicine 48: 621–630.

    Article  PubMed  Google Scholar 

  10. Blum, T., P. Maisonneuve, A.B. Lowenfels, et al. 2001. Fatal outcome in acute pancreatitis: its occurrence and early prediction. Pancreatology 1: 237–241.

    Article  CAS  PubMed  Google Scholar 

  11. De Campos, T., C. Cerqueira, L. Kuryura, et al. 2008. Morbimortality indicators in severe acute pancreatitis. JOP 9: 690–697.

    PubMed  Google Scholar 

  12. Jeong, W.S., M. Jun, and A.N. Kong. 2006. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxidants and Redox Signaling 8: 99–106.

    Article  CAS  PubMed  Google Scholar 

  13. Copple, I.M., C.E. Goldring, N.R. Kitteringham, et al. 2010. The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handbook of Experimental Pharmacology(233–266).

  14. Chan, K.H., M.K. Ng, and R. Stocker. 2011. Haem oxygenase-1 and cardiovascular disease: mechanisms and therapeutic potential. Clin Sci (Lond) 120: 493–504.

    Article  CAS  Google Scholar 

  15. Calkins, M.J., R.J. Jakel, D.A. Johnson, et al. 2005. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America 102: 244–249.

  16. Chen, X.L., G. Dodd, S. Thomas, et al. 2006. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. American Journal of Physiology - Heart and Circulatory Physiology 290: H1862–H1870.

    Article  CAS  PubMed  Google Scholar 

  17. Chiang, N., M. Arita, and C.N. Serhan. 2005. Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins, Leukotrienes, and Essential Fatty Acids 73: 163–177.

    Article  CAS  PubMed  Google Scholar 

  18. Gong, J., S. Guo, H.B. Li, et al. 2012. BML-111, a lipoxin receptor agonist, protects haemorrhagic shock-induced acute lung injury in rats. Resuscitation 83: 907–912.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, L., X. Zhang, P. Wu, et al. 2008. BML-111, a lipoxin receptor agonist, modulates the immune response and reduces the severity of collagen-induced arthritis. Inflammation Research 57: 157–162.

    Article  CAS  PubMed  Google Scholar 

  20. Wang YZ, Zhang YC, Cheng JS, et al. 2013. BML-111, a lipoxin receptor agonist, ameliorates 'two-hit'-induced acute pancreatitis-associated lung injury in mice by the upregulation of heme oxygenase-1. Artif Cells Nanomed Biotechnol. [Epub ahead of print]

  21. Zhang, L., J. Wan, H. Li, et al. 2007. Protective effects of BML-111, a lipoxin A(4) receptor agonist, on carbon tetrachloride-induced liver injury in mice. Hepatology Research 37: 948–956.

    Article  CAS  PubMed  Google Scholar 

  22. Hao, H., M. Liu, P. Wu, et al. 2011. Lipoxin A4 and its analog suppress hepatocellular carcinoma via remodeling tumor microenvironment. Cancer Letters 309: 85–94.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt, J., D.W. Rattner, K. Lewandrowski, et al. 1992. A better model of acute pancreatitis for evaluating therapy. Annals of Surgery 215: 44–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hofbauer, B., A.K. Saluja, M. Bhatia, et al. 1998. Effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis. Gastroenterology 115: 1238–1247.

    Article  CAS  PubMed  Google Scholar 

  25. Steer, M.L. 2001. Relationship between pancreatitis and lung diseases. Respiration Physiology 128: 13–16.

    Article  CAS  PubMed  Google Scholar 

  26. Pastor, C.M., M.A. Matthay, and J.L. Frossard. 2003. Pancreatitis-associated acute lung injury: new insights. Chest 124: 2341–2351.

    Article  PubMed  Google Scholar 

  27. Gong, J., H.B. Li, S. Guo, et al. 2012. Lipoxin receptor agonist, may be a potential treatment for hemorrhagic shock-induced acute lung injury. Medical Hypotheses 79: 92–94.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Y., H. Hao, S. He, et al. 2010. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics 9: 2164–2174.

    Article  CAS  PubMed  Google Scholar 

  29. Hybertson, B.M., B. Gao, S.K. Bose, et al. 2011. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine 32: 234–246.

    Article  CAS  PubMed  Google Scholar 

  30. Itoh, K., M. Mochizuki, Y. Ishii, et al. 2004. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2). Molecular and Cellular Biology 24: 36–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kikuchi, N., Y. Ishii, Y. Morishima, et al. 2010. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respiratory Research 11: 31.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bogaard, H.J., R. Natarajan, S.C. Henderson, et al. 2009. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120: 1951–1960.

    Article  PubMed  Google Scholar 

  33. Yoon, H.Y., N.I. Kang, H.K. Lee, et al. 2008. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochemical Pharmacology 75: 2214–2223.

    Article  CAS  PubMed  Google Scholar 

  34. Calvert, J.W., S. Jha, S. Gundewar, et al. 2009. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circulation Research 105: 365–374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Satoh, T., K. Kosaka, K. Itoh, et al. 2008. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. Journal of Neurochemistry 104: 1116–1131.

    Google Scholar 

  36. Kalayarasan, S., P.N. Prabhu, N. Sriram, et al. 2009. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. European Journal of Pharmacology 606: 162–171.

    Article  CAS  PubMed  Google Scholar 

  37. Sriram, N., S. Kalayarasan, and G. Sudhandiran. 2009. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling. Pulmonary Pharmacology & Therapeutics 22: 221–236.

    Article  CAS  Google Scholar 

  38. Jung, K.H., S.W. Hong, H.M. Zheng, et al. 2010. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. Journal of Pineal Research 48: 239–250.

    Article  CAS  PubMed  Google Scholar 

  39. Li, M., X. Zhang, L. Cui, et al. 2011. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: role of nrf2 and hemeoxygenase-1 expression. Biological and Pharmaceutical Bulletin 34: 595–601.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Ms. Hong-yan Guo, Ms. Xiao-ni Ma, and Mr. Jie Cheng for excellent technical assistance and Mr. Xi-ping Shen for his help with statistical analysis during this study.

Conflict of Interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-cheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Yz., Zhang, Yc., Cheng, Js. et al. Protective Effects of BML-111 on Cerulein-Induced Acute Pancreatitis-Associated Lung Injury via Activation of Nrf2/ARE Signaling Pathway. Inflammation 37, 1120–1133 (2014). https://doi.org/10.1007/s10753-014-9836-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9836-y

KEY WORDS

Navigation