Skip to main content

Advertisement

Log in

Cyane-carvone, a Synthetic Derivative of Carvone, Inhibits Inflammatory Response by Reducing Cytokine Production and Oxidative Stress and Shows Antinociceptive Effect in Mice

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cyane-carvone (CC) was studied to elucidate its anti-inflammatory, antinociceptive, and antioxidant effects in Mus musculus. Anti-inflammatory (bradykinin, histamine, prostaglandin E2, serotonin, and carrageenan) and antinociceptive (acetic acid and formalin) models were utilized. Myeloperoxidase activity, interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and glutathione (GSH) levels were evaluated. Analysis of variance followed by Student-Newman-Keuls’ test was done. Results were compared with control groups (significantly when p < 0.05). In bradykinin, histamine, prostaglandin E2, and serotonin tests, 75 mg/kg CC decreased significantly paw edema (t = 30, 60, 90, and/or 120 min). In carrageenan test, 50 and 75 mg/kg CC (t = 3 h and t = 4 h) and 25 mg/kg CC (t = 4 h) decreased significantly paw edema. CC (75 mg/kg) inhibited significantly mieloperoxidase activity and decreased IL-1β and TNF-α, and all doses increased GSH levels. CC (75 mg/kg) decreased significantly the number of contortions of animals and time of licking (phase 2). CC showed anti-inflammatory, antinociceptive, and antioxidant effects in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vodovotz, Y., G. Constantine, J. Rubin, et al. 2009. Mechanistic simulations of inflammation: Current state and future prospects. Mathematical Biosciences 17: 1–10.

    Article  Google Scholar 

  2. Cuzzocrea, S., G. Costantino, B. Zingarelli, et al. 1999. The protective role of endogenous glutathione in carrageenan-induced pleurisy in the rat. European Journal of Pharmacology 372: 187–197.

    Article  CAS  PubMed  Google Scholar 

  3. Loria, V., I. Dato, F. Graziani, et al. 2008. Myeloperoxidase: A new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators of Inflammation 2008: 1–4

  4. Harrison, P., J.J. Pointon, K. Chapman, et al. 2008. Interleukin-1 promoter region polymorphism role in rheumatoid arthritis: A meta-analysis of IL-1B-511A/G variant reveals association with rheumatoid arthritis. Rheumatology 47(12): 1768–1770.

    Article  CAS  PubMed  Google Scholar 

  5. Borsook, D. 2011. Neurological diseases and pain. Brain 135(2): 320–344.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gonçalves, J.C., A.M. Alves, A.E. de Araújo, et al. 2010. Distinct effects of carvone analogues on the isolated nerve of rats. European Journal of Pharmacology 645(1–3): 108–112.

    Article  PubMed  Google Scholar 

  7. Helander, I.M., H. Alakomi, K. Latva-Kala, et al. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry 46(9): 3590–3595.

    Article  CAS  Google Scholar 

  8. Smid, E.J., J.P.G. Koeken, and L.G.M. Gorris. 1996. Fungicidal and fungistatic action of the secondary plant metabolites cinnamaldehyde and carvone. In Modern fungicides and antimicrobial compounds, ed. H. Lyr, P.E. Russell, and H.D. Sisler, 173–180. Andover: Intercept.

    Google Scholar 

  9. Costa, D.A., G.A. Oliveira, T.C. Lima, et al. 2012. Anticonvulsant and antioxidant effects of cyano-carvone and its action on acetylcholinesterase activity in mice hippocampus. Cellular and Molecular Neurobiology 32(4): 633–640.

    Article  CAS  PubMed  Google Scholar 

  10. Costa, D.A., G.A.L. Oliveira, J.P. Costa, et al. 2012. Avaliação da toxicidade aguda e do efeito ansiolítico de um derivado sintético da carvona. Revista Brasileira de Ciências da Saúde 16(3): 303–310.

    Article  Google Scholar 

  11. Cocker, W., D.H. Grayson, and P.V.R. Shannon. 1995. Hydrocyanation of some α,β-unsaturated ketones, and the synthesis of some unusual isoxazoles. Journal of the Chemical Society, Perkin Transactions 1(9): 1153–1162.

    Article  Google Scholar 

  12. Costa, D.A., G.A.L. de Oliveira, D.P. de Sousa, et al. 2012. Avaliação do potencial antioxidante in vitro do composto ciano-carvona. Revista de Ciências Farmacêuticas Básica e Aplicada 33(4): 567–575.

    CAS  Google Scholar 

  13. Institute of Laboratory Animal Resources. 1985. Guide for the care and use of laboratory animals, 6th ed. Washington, DC: National Academy Press.

    Google Scholar 

  14. Hargreaves, K., R. Dubner, F. Brown, et al. 1988. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.

    Article  CAS  PubMed  Google Scholar 

  15. Winter, C.A., E.A. Risley, and C.W. Nuss. 1962. Carrageenan-induced oedema in hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of The Society for Experimental Biology and Medicine 111: 544–547.

    Article  CAS  PubMed  Google Scholar 

  16. Kasahara, Y., H. Hikino, S. Tsurufiji, et al. 1985. Antiinflammatory actions of ephedrines in acute inflammations. Planta Medica 51: 325–331.

    Article  CAS  PubMed  Google Scholar 

  17. Cole, H.W., C.E. Brown, D.E. Magee, et al. 1995. Serotonin-induced paw edema in the rat: Pharmacological profile. General Pharmacology 26(2): 431–436.

    Article  CAS  PubMed  Google Scholar 

  18. Yesilada, E., and E. Küpeli. 2002. Berberis crategina DC. Root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats. Journal of Ethnopharmacology 79: 237–248.

    Article  PubMed  Google Scholar 

  19. Bradley, P.P., D.A. Priebat, R.D. Christensen, et al. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology 78: 206–209.

    Article  CAS  PubMed  Google Scholar 

  20. Silva, R.O., Sousa, F.B.M. , Damasceno S.R.B. et al. 2013. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundamental & Clinical Pharmacology 1-27

  21. Cunha, F.Q., M.A. Boukili, J.I.B. Motta, et al. 1993. Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat. European Journal of Pharmacology 238: 47–52.

    Article  CAS  PubMed  Google Scholar 

  22. Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry 24: 1992–2005.

    Google Scholar 

  23. Koster, R., M. Anderson, and E.J. De Beer. 1959. Acetic acid for analgesic screening. Federation Proceedings 18: 412–416.

    Google Scholar 

  24. Hunskaar, S., and K. Hole. 1987. The formalin test in mice dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–114.

    Article  CAS  PubMed  Google Scholar 

  25. Dash, S., S.K. Kanungo, and S.C. Dinda. 2013. Anti-inflammatory activity of Aponogeton natans (Linn.) Engl. & Krause in different experimental animal models. Der Pharmacia Lettre 5(1): 136–140.

    Google Scholar 

  26. Campos, M.M., and J.B. Calixto. 1995. Involvement of B1 and B2 receptors in bradykinin-induced rat paw oedema. British Journal of Pharmacology 114: 1005–1013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Posadas, I., M. Bucci, F. Roviezzo, et al. 2004. Carageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. British Journal of Pharmacology 142: 331–338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Samad, T.A., A. Sapirstein, and C.J. Woolf. 2002. Prostanoids and pain: Unraveling mechanisms and revealing therapeutic targets. Trends in Molecular Medicine 8(8): 390–396.

    Article  CAS  PubMed  Google Scholar 

  29. Linardi, A., S.K.P. Costa, G.R. Da Silva, et al. 2002. Involvement of kinins, mast cells and sensory neurons in the plasma exudation and paw edema induced by staphylococcal enterotoxin B in the mouse. European Journal of Pharmacology 399: 235–242.

    Article  Google Scholar 

  30. Cuman, R.K.N., C.A. Bersani-Amadio, and Z.B. Fortes. 2001. Influence of type 2 diabetes on the inflammatory response in rat. Inflammation Research 50: 460–465.

    Article  CAS  PubMed  Google Scholar 

  31. Skidmor, I., and M. Whitehouse. 1967. Biochemical properties of anti-inflammatory drugs X: The inhibition of serotonin formation in vitro and inhibition of the esterase activity of α-chymyotrysin. Biochemical Pharmacology 16: 737–751.

    Article  Google Scholar 

  32. Di Rosa, M., J.P. Giroud, and D.A. Willoughby. 1971. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. The Journal of Pathology 104: 15–29.

    Article  PubMed  Google Scholar 

  33. Di Rosa, M., J.M. Papadimitriou, and D.A. Willoughby. 1971. A histopathological and pharmacological analysis of the mode of action of nonsteroidal anti-inflammatory drugs. The Journal of Pathology 105: 239–256.

    Article  PubMed  Google Scholar 

  34. Di Rosa, M. 1972. Biological properties of carrageenan. Journal of Pharmacy and Pharmacology 24: 89–102.

    Article  PubMed  Google Scholar 

  35. Garcia Leme, J., L. Hamamura, M.P. Leite, et al. 1973. Pharmacological analysis of the acute inflammatory process induced in the rat’s paw by local injection of carrageenin and by heating. British Journal of Pharmacology 48: 88–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nantel, F., D. Denis, R. Gordon, et al. 1999. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. British Journal of Pharmacology 128: 853–859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Henriques, M.G.M.O., P.M.R. Silva, M.A. Martins, et al. 1987. Mouse paw oedema. A new model for inflammation. Brazilian Journal Of Medical and Biological Research 20: 243–249.

    CAS  PubMed  Google Scholar 

  38. Morris, C.J. 2003. Carrageenan-induced paw edema in the rat and mouse. Methods in Molecular Biology 225: 115–121.

    PubMed  Google Scholar 

  39. Salvemini, D., Z.Q. Wang, and P.S. Wyatt. 1996. Wyatt et al. Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. British Journal of Pharmacology 118: 829–838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Banani, A., N. Maleki-Dizaji, H. Niknahad, et al. 2012. N-Acetylaspartylglutamate (NAAG) exhibits anti-inflammatory effects on carrageenan-induced paw edema model of inflammation in rats. African Journal of Pharmacy and Pharmacology 6(23): 1702–1709.

    CAS  Google Scholar 

  41. Gabay, C., C. Lamacchia, and G. Palmer. 2010. IL-1 pathways in inflammation and human diseases. Nature Reviews. Rheumatology 6(4): 232–241.

    Article  CAS  PubMed  Google Scholar 

  42. Esposito, E., and S. Cuzzocrea. 2009. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Current Medicinal Chemistry 16(24): 3152–3167.

    Article  CAS  PubMed  Google Scholar 

  43. Liao, J.C., J.S. Deng, C.S. Chiu, et al. 2012. Anti-inflammatory activities of Cinnamomum cassia constituents in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine 2012: 1–12.

    Google Scholar 

  44. Cuzzocrea, S. 2005. Shock, inflammation and PARP. Pharmacological Research 52: 72–82.

    Article  CAS  PubMed  Google Scholar 

  45. Negus, S.S., T.W. Bandera, M.R. Brandt, et al. 2006. Preclinical assessment of candidate analgesic drugs: Recent advances and future challenges. Journal of Pharmacology and Experimental Therapeutics 19: 507–514.

    Article  Google Scholar 

  46. Zeilhofer, H.U. 2005. Synaptic modulation in pain pathways. Reviews of Physiology, Biochemistry and Pharmacology 154: 73–100.

    CAS  PubMed  Google Scholar 

  47. Mazur, A., and S. Fidecka. 2011. The antinociceptive effects of topiramate evaluated in writhing test in mice. Current Issues in Pharmacy and Medical Sciences 24(1): 111–120.

    Google Scholar 

  48. Puig, S., and L.S. Sorkin. 1996. Formalin-evoked activity in identified primary afferent fibers: Systemic lidocaine suppresses phase-2 activity. Pain 64: 345–355.

    Article  CAS  PubMed  Google Scholar 

  49. Han, Y.K., S.H. Lee, H.J. Jeong, et al. 2012. Analgesic effects of intrathecal curcumin in the rat formalin test. The Korean Journal of Pain 25(1): 1–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Council for Scientific and Technological Development (CNPq) and Research Supporting Foundation of State of Piauí (FAPEPI/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rivelilson Mendes de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, T.H.C., Marques, M.L.B.G.C.B., Medeiros, JV.R. et al. Cyane-carvone, a Synthetic Derivative of Carvone, Inhibits Inflammatory Response by Reducing Cytokine Production and Oxidative Stress and Shows Antinociceptive Effect in Mice. Inflammation 37, 966–977 (2014). https://doi.org/10.1007/s10753-014-9817-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9817-1

KEY WORDS

Navigation