Skip to main content
Log in

NLRC5 Mediates Cytokine Secretion in RAW264.7 Macrophages and Modulated by the JAK2/STAT3 Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The nucleotide-binding domain leucine-rich repeat proteins (NLRs), a class of innate immune receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5 is the largest member of NLR family, which has recently been identified as a critical regulator of immune responses. In this study, we explore the role of NLRC5 in cytokine secretion and the role of the JAK2/STAT3 signaling pathway in lipopolysaccharide-induced NLRC5 expression in RAW264.7 cells. We demonstrated that overexpression of NLRC5 results in a downregulation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion; on the other hand, knockdown of NLRC5 by transfecting siRNA enhanced IL-6 and TNF-α secretion in RAW264.7 cells. These results indicated that NLRC5 plays a negative role in the regulation of IL-6 and TNF-α. Meanwhile, AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway) and JAK2 siRNA were used to manipulate JAK2/STAT3 activity. Finally, the results showed that AG490 and JAK2 siRNA inhibited NLRC5 expression and the expression levels of p-JAK2 and p-STAT3. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in decrease of NLRC5 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NLRs:

Nucleotide-binding domain leucine-rich repeat proteins

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor-α

IL-6:

Interleukin-6

PRRs:

Pattern recognition receptors

PAMPs:

Pathogen-associated molecular patterns

RLRs:

RIG-I (retinoid acid-inducible gene I)-like receptors

TLRs:

Toll-like receptors

CLRs:

C-type lectin receptors

NLRs:

NOD-like receptors

NLRC5:

NLR family, CARD domain containing 5

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zoliumbromide)

DMSO:

Dimethyl sulfoxide

DMEM:

Dulbecco’s modified Eagle’s medium

ELISA:

Enzyme-linked immunosorbent assay

PCR:

Polymerase chain reaction

REFERENCES

  1. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801.

    Article  CAS  PubMed  Google Scholar 

  2. Meylan, E., J. Tschopp, and M. Karin. 2006. Intracellular pattern recognition receptors in the host response. Nature 442: 39–44.

    Article  CAS  PubMed  Google Scholar 

  3. Honda, K., and T. Taniguchi. 2006. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Reviews Immunology 6: 644–658.

    Article  CAS  PubMed  Google Scholar 

  4. Liew, F.Y., D. Xu, E.K. Brint, and L.A. O’Neill. 2005. Negative regulation of toll-like receptor-mediated immune responses. Nature Reviews Immunology 5: 446–458.

    Article  CAS  PubMed  Google Scholar 

  5. Ting, J.P., D.L. Kastner, and H.M. Hoffman. 2006. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Reviews Immunology 6: 183–195.

    Article  CAS  PubMed  Google Scholar 

  6. Inohara, Chamaillard, C. McDonald, and G. Nunez. 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annual Review of Biochemistry 74: 355–383.

    Article  CAS  PubMed  Google Scholar 

  7. Abrahams, V.M. 2011. The role of the Nod-like receptor family in trophoblast innate immune responses. Journal of Reproductive Immunology 88: 112–117.

    Article  CAS  PubMed  Google Scholar 

  8. Martin, A.P., T. Marinkovic, C. Canasto-Chibuque, R. Latif, J.C. Unkeless, T.F. Davies, Y. Takahama, G.C. Furtado, and S.A. Lira. 2009. CCR7 deficiency in NOD mice leads to thyroiditis and primary hypothyroidism. Journal of Immunology 183: 3073–3080.

    Article  CAS  Google Scholar 

  9. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140: 821–832.

    Article  CAS  PubMed  Google Scholar 

  10. Benko, S., D.J. Philpott, and S.E. Girardin. 2008. The microbial and danger signals that activate Nod-like receptors. Cytokine 43: 368–373.

    Article  CAS  PubMed  Google Scholar 

  11. Lian, L., C. Ciraci, G. Chang, J. Hu, and S.J. Lamont. 2012. NLRC5 knockdown in chicken macrophages alters response to LPS and poly (I:C) stimulation. BMC Veterinary Research 8: 23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cui, J., L. Zhu, X. Xia, H.Y. Wang, X. Legras, J. Hong, J. Ji, P. Shen, S. Zheng, Z.J. Chen, and R.F. Wang. 2010. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141: 483–496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Neerincx, A., K. Lautz, M. Menning, E. Kremmer, P. Zigrino, M. Hosel, H. Buning, R. Schwarzenbacher, and T.A. Kufer. 2010. A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. Journal of Biological Chemistry 285: 26223–26232.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Neerincx, A., G.M. Rodriguez, V. Steimle, and T.A. Kufer. 2012. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. Journal of Immunology 188: 4940–4950.

    Article  CAS  Google Scholar 

  15. Kuenzel, S., A. Till, M. Winkler, R. Hasler, S. Lipinski, S. Jung, J. Grotzinger, H. Fickenscher, S. Schreiber, and P. Rosenstiel. 2010. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. Journal of Immunology 184: 1990–2000.

    Article  CAS  Google Scholar 

  16. Benko, S., J.G. Magalhaes, D.J. Philpott, and S.E. Girardin. 2010. NLRC5 limits the activation of inflammatory pathways. Journal of Immunology 185: 1681–1691.

    Article  CAS  Google Scholar 

  17. Meissner, T.B., A. Li, A. Biswas, K.H. Lee, Y.J. Liu, E. Bayir, D. Iliopoulos, P.J. van den Elsen, and K.S. Kobayashi. 2010. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proceedings of the National Academy of Sciences of the United States of America 107: 13794–13799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Meissner, T.B., A. Li, and K.S. Kobayashi. 2012. NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes and Infection 14: 477–484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yao, Y., and Y. Qian. 2013. Expression regulation and function of NLRC5. Protein & Cell 4: 168–175.

    Article  CAS  Google Scholar 

  20. You, Z., D. Xu, J. Ji, W. Guo, W. Zhu, and J. He. 2012. JAK/STAT signal pathway activation promotes progression and survival of human oesophageal squamous cell carcinoma. Clinical and Translational Oncology 14: 143–149.

    Article  CAS  PubMed  Google Scholar 

  21. Kisseleva, T., S. Bhattacharya, J. Braunstein, and C.W. Schindler. 2002. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285: 1–24.

    Article  CAS  PubMed  Google Scholar 

  22. Kawasaki, M., M. Fujishiro, A. Yamaguchi, K. Nozawa, H. Kaneko, Y. Takasaki, K. Takamori, H. Ogawa, and I. Sekigawa. 2011. Possible role of the JAK/STAT pathways in the regulation of T cell-interferon related genes in systemic lupus erythematosus. Lupus 20: 1231–1239.

    Article  CAS  PubMed  Google Scholar 

  23. Kang, J.W., and S.M. Lee. 2012. Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion. Journal of Pineal Research 53: 67–76.

    Article  CAS  PubMed  Google Scholar 

  24. Duan, W., Y. Yang, J. Yan, S. Yu, J. Liu, J. Zhou, J. Zhang, Z. Jin, and D. Yi. 2012. The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Research in Cardiology 107: 263.

    Article  PubMed  Google Scholar 

  25. Betts, B.C., O. Abdel-Wahab, S.A. Curran, E.T. St Angelo, P. Koppikar, G. Heller, R.L. Levine, and J.W. Young. 2011. Janus kinase-2 inhibition induces durable tolerance to alloantigen by human dendritic cell-stimulated T cells yet preserves immunity to recall antigen. Blood 118: 5330–5339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Quintas-Cardama, A. 2013. The role of Janus kinase 2 (JAK2) in myeloproliferative neoplasms: therapeutic implications. Leukemia Research 37: 465–472.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, W., Q. Sun, X. Gao, Y. Jiang, R. Li, and J. Ye. 2013. Anti-inflammation of spirocyclopiperazinium salt compound LXM-10 targeting alpha7 nAChR and M4 mAChR and inhibiting JAK2/STAT3 pathway in rats. PLoS One 8: e66895.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Terrell, A.M., P.R. Crisostomo, G.M. Wairiuko, M. Wang, E.D. Morrell, and D.R. Meldrum. 2006. Jak/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock 26: 226–234.

    Article  CAS  PubMed  Google Scholar 

  29. Karin, M., T. Lawrence, and V. Nizet. 2006. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124: 823–835.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, R.F., Y. Miyahara, and H.Y. Wang. 2008. Toll-like receptors and immune regulation: implications for cancer therapy. Oncogene 27: 181–189.

    Article  PubMed  Google Scholar 

  31. Hoffman, H.M., and S.D. Brydges. 2011. Genetic and molecular basis of inflammasome-mediated disease. Journal of Biological Chemistry 286: 10889–10896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Allen, I.C. 2011. A NOD to zebrafish models of inflammatory bowel disease pathogenesis. Disease Models & Mechanisms 4: 711–712.

    Article  CAS  Google Scholar 

  33. Rothwarf, D.M., E. Zandi, G. Natoli, and M. Karin. 1998. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395: 297–300.

    Article  CAS  PubMed  Google Scholar 

  34. Koppula, S., W.J. Kim, J. Jiang, D.W. Shim, N.H. Oh, T.J. Kim, T.B. Kang, and K.H. Lee. 2013. Carpesium macrocephalum attenuates lipopolysaccharide-induced inflammation in macrophages by regulating the NF-kappa B/I kappa B-alpha, Akt, and STAT signaling pathways. American Journal of Chinese Medicine 41: 927–943.

    Article  PubMed  Google Scholar 

  35. Fan GW, Zhang Y, Jiang X, Zhu Y, Wang B, Su L, Cao W, Zhang H, Gao X. 2013. Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-kappaB-dependent pathways. Inflammation 36:1584–1591.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the key program of National Natural Science Foundation of China (no. 81273526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Xu, T., Huang, C. et al. NLRC5 Mediates Cytokine Secretion in RAW264.7 Macrophages and Modulated by the JAK2/STAT3 Pathway. Inflammation 37, 835–847 (2014). https://doi.org/10.1007/s10753-013-9804-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9804-y

KEY WORDS

Navigation