Skip to main content

Advertisement

Log in

The Second-Generation mTOR Kinase Inhibitor INK128 Exhibits Anti-inflammatory Activity in Lipopolysaccharide-Activated RAW 264.7 Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cross-talk between the mTOR (mechanistic target of rapamycin) and NF-κB (nuclear factor kappa-B) pathways has been reported to regulate macrophage responses to lipopolysaccharide (LPS). In this study, we aimed to explore the effect of INK128, a second-generation inhibitor of mTOR, on the inflammatory cytokine production in LPS-stimulated RAW 264.7 cells. Our data showed that INK128 strikingly inhibited the phosphorylation of p70S6K, 4E-BP1 and AKTSer473 in both unstimulated and LPS-stimulated cells. Although it increased the phosphorylation levels of inhibitor kappa-B (IκB) in LPS-stimulated cells, INK128 did not significantly change the levels of NF-κB phosphorylation. In addition, LPS-induced expression of IL-1β and IL-6 was markedly suppressed by INK128 at both mRNA and protein levels. However, the expression of Tumor necrosis factor-alpha (TNF-α protein), but not its mRNA level, was suppressed by this reagent. Our results suggest that the mTOR inhibitor INK128 not only regulates the NF-κB signaling but also influences the inflammatory cytokine expression at both transcriptional and translational levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wullschleger, S., R. Loewith, and M.N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124: 471–84.

    Article  CAS  PubMed  Google Scholar 

  2. Zoncu, R., A. Efeyan, and D.M. Sabatini. 2011. mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology 12: 21–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Thomson, A.W., H.R. Turnquist, and G. Raimondi. 2009. Immunoregulatory functions of mTOR inhibition. Nature Reviews Immunology 9: 324–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Delgoffe, G.M., K.N. Pollizzi, A.T. Waickman, et al. 2011. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology 12: 295–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chi, H. 2012. Regulation and function of mTOR signalling in T cell fate decisions. Nature Reviews Immunology 12: 325–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Weichhart, T., G. Costantino, M. Poglitsch, et al. 2008. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29: 565–77.

    Article  CAS  PubMed  Google Scholar 

  7. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology 11: 373–84.

    Article  CAS  PubMed  Google Scholar 

  8. Vallabhapurapu, S., and M. Karin. 2009. Regulation and function of NF-kappaB transcription factors in the immune system. Annual Review of Immunology 27: 693–733.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, J.E., R.J. Phillips, H. Erdjument-Bromage, P. Tempst, and S. Ghosh. 1995. IκB-β regulates the persistent response in a biphasic activation of NFκB. Cell 80: 573–82.

    Article  CAS  PubMed  Google Scholar 

  10. Whiteside, S.T., J.C. Epinat, N.R. Rice, and A. Israël. 1997. IκB epsilon, a novel member of the I kappa B family, controls RelA and cRel NF-κB activity. EMBO Journal 16: 1413–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Traenckner, E.B., H.L. Pahl, T. Henkel, K.N. Schmidt, S. Wilk, and P.A. Baeuerle. 1995. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls IκB-alpha proteolysis and NF-κB activation in response to diverse stimuli. EMBO Journal 14: 2876–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Scherer, D.C., J.A. Brockman, Z. Chen, T. Maniatis, and D.W. Ballard. 1995. Signal-induced degradation of IκB alpha requires site-specific ubiquitination. Proceedings of the National Academy of Sciences of the United States of America 92: 11259–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fielhaber, J.A., S.F. Carroll, A.B. Dydensborg, M. Shourian, A. Triantafillopoulos, S. Harel, S.N. Hussain, M. Bouchard, S.T. Qureshi, and A.S. Kristof. 2012. Inhibition of mammalian target of rapamycin augments lipopolysaccharide-induced lung injury and apoptosis. Journal of Immunology 188: 4535–42.

    Article  CAS  Google Scholar 

  14. Ghosh, S., V. Tergaonkar, C.V. Rothlin, R.G. Correa, V. Bottero, P. Bist, I.M. Verma, and T. Hunter. 2006. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival. Cancer Cell 10: 215–26.

    Article  CAS  PubMed  Google Scholar 

  15. Dan, H.C., M.J. Cooper, P.C. Cogswell, J.A. Duncan, J.P. Ting, and A.S. Baldwin. 2008. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and raptor in association with IKK. Genes and Development 22: 1490–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ikenoue, T., K. Inoki, Q. Yang, X. Zhou, and K.L. Guan. 2008. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO Journal 27: 1919–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Huang, X., L.Y. Chen, A.M. Doerner, W.W. Pan, L. Smith, S. Huang, T.J. Papadimos, and Z.K. Pan. 2009. An atypical protein kinase C (PKC zeta) plays a critical role in lipopolysaccharide-activated NF-κB in human peripheral blood monocytes and macrophages. Journal of Immunology 182: 5810–5.

    Article  CAS  Google Scholar 

  18. Woodland, R.T., C.J. Fox, M.R. Schmidt, et al. 2008. Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood 111: 750–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Powell, J.D., and G.M. Delgoffe. 2010. The mammalian target of rapamycin: Linking T cell differentiation, function, and metabolism. Immunity 33: 301–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kaech, S.M., and W. Cui. 2012. Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Reviews Immunology 12: 749–61.

    Article  CAS  PubMed  Google Scholar 

  21. Baker, A.K., R. Wang, N. Mackman, and J.P. Luyendyk. 2009. Rapamycin enhances LPS induction of tissue factor and tumor necrosis factor-alpha expression in macrophages by reducing IL-10 expression. Molecular Immunology 46: 2249–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee, K., P. Gudapati, S. Dragovic, et al. 2010. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32: 743–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schenone, S., C. Brullo, F. Musumeci, M. Radi, and M. Botta. 2011. ATP-competitive inhibitors of mTOR: An update. Current Medicinal Chemistry 18: 2995–3014.

    Article  CAS  PubMed  Google Scholar 

  24. Janes, M.R., C. Vu, S. Mallya, et al. 2013. Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia 27: 586–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Qiao, J., L.H. Xu, J. He, D.Y. Ouyang, and X.H. He. 2013. Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation. Inflammation Research 62: 461–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ouyang, D.Y., L.H. Xu, X.H. He, et al. 2013. Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. Autophagy 9: 20–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kunz, J., R. Henriquez, U. Schneider, M. Deuter-Reinhard, N.R. Movva, and M.N. Hall. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–96.

    Article  CAS  PubMed  Google Scholar 

  28. Brown, E.J., M.W. Albers, T.B. Shin, et al. 1994. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–8.

    Article  CAS  PubMed  Google Scholar 

  29. Oshiro, N., K. Yoshino, S. Hidayat, et al. 2004. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes to Cells 9: 359–66.

    Article  CAS  PubMed  Google Scholar 

  30. Jefferies, H.B., S. Fumagalli, P.B. Dennis, C. Reinhard, R.B. Pearson, and G. Thomas. 1997. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO Journal 16: 3693–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yip, C.K., K. Murata, T. Walz, D.M. Sabatini, and S.A. Kang. 2010. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Molecular Cell 38: 768–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Park, B.S., D.H. Song, H.M. Kim, B.S. Choi, H. Lee, and J.O. Lee. 2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458: 1191–5.

    Article  CAS  PubMed  Google Scholar 

  33. Hotamisligil, G.S., and E. Erbay. 2008. Nutrient sensing and inflammation in metabolic diseases. Nature Reviews Immunology 8: 923–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Choo, A.Y., S.O. Yoon, S.G. Kim, P.P. Roux, and J. Blenis. 2008. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America 105: 17414–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tain, L.S., H. Mortiboys, R.N. Tao, E. Ziviani, O. Bandmann, and A.J. Whitworth. 2009. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neuroscience 12: 1129–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Maiso, P., Y. Liu, B. Morgan, et al. 2011. Defining the role of TORC1/2 in multiple myeloma. Blood 118: 6860–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Levine, B., and V. Deretic. 2007. Unveiling the roles of autophagy in innate and adaptive immunity. Nature Reviews Immunology 7: 767–77.

    Article  CAS  PubMed  Google Scholar 

  38. Weichhart, T., and M.D. Saemann. 2009. The multiple facets of mTOR in immunity. Trends in Immunology 30: 218–26.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30: 16–34.

    Article  CAS  PubMed  Google Scholar 

  40. Dos Santos, S., A.I. Delattre, F. De Longueville, H. Bult, and M. Raes. 2007. Gene expression profiling of LPS-stimulated murine macrophages and role of the NF-κB and PI3K/mTOR signaling pathways. Annals of the New York Academy of Sciences 1096: 70–7.

    Article  PubMed  Google Scholar 

  41. Schmitz, F., A. Heit, S. Dreher, et al. 2008. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. European Journal of Immunology 38: 2981–92.

    Article  CAS  PubMed  Google Scholar 

  42. Thoreen, C.C., L. Chantranupong, H.R. Keys, T. Wang, N.S. Gray, and D.M. Sabatini. 2012. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485: 109–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hsieh, A.C., Y. Liu, M.P. Edlind, et al. 2012. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485: 55–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Licursi, M., Y. Komatsu, T. Pongnopparat, and K. Hirasawa. 2012. Promotion of viral internal ribosomal entry site-mediated translation under amino acid starvation. Journal of General Virology 93(Pt 5): 951–62.

    Article  CAS  PubMed  Google Scholar 

  45. Shi, Y., A. Sharma, H. Wu, A. Lichtenstein, and J. Gera. 2005. Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. Journal of Biological Chemistry 280: 10964–73.

    Article  CAS  PubMed  Google Scholar 

  46. Vartanian, R., J. Masri, J. Martin, et al. 2011. AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition: Role of AIP4/Itch-mediated JUNB degradation. Molecular Cancer Research 9: 115–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Natural Science Foundation of China (No. 81373423, 81173604), the Specialized Research Program of "Twelfth Five-Year Plan" of China (No. 2011ZX09307-303-03) and the Fundamental Research Funds for the Central Universities (No. 21612411).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Yun Ouyang or Xian-Hui He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, H., Xu, LH., Ouyang, DY. et al. The Second-Generation mTOR Kinase Inhibitor INK128 Exhibits Anti-inflammatory Activity in Lipopolysaccharide-Activated RAW 264.7 Cells. Inflammation 37, 756–765 (2014). https://doi.org/10.1007/s10753-013-9794-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9794-9

KEY WORDS

Navigation