, Volume 36, Issue 6, pp 1468–1478 | Cite as

Antihyperalgesic and Anti-inflammatory Effects of Atorvastatin in Chronic Constriction Injury-Induced Neuropathic Pain in Rats

  • Nitya N. Pathak
  • Venkanna Balaganur
  • Madhu C. Lingaraju
  • Amar S. More
  • Vinay Kant
  • Dhirendra Kumar
  • Dinesh Kumar
  • Surendra Kumar Tandan


Atorvastatin is a 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor used in treatment of hypercholesterolemia and prevention of coronary heart disease. The aim of this study is to investigate the antihyperalgesic and anti-inflammatory effects of atorvastatin (3, 10, and 30 mg/kg by oral gavages for 14 days) in chronic constriction injury (CCI) model of neuropathic pain in rats. CCI caused significant increase in tumor necrosis factor-α, interleukin 1 beta, prostaglandin E2, along with matrix metalloproteases (MMP-2) and nerve growth factor (NGF) levels in sciatic nerve and spinal cord concomitant with mechanical and thermal hyperalgesia, which were significantly reduced by oral administration of atorvastatin for 14 days as compared to CCI rats. Our study demonstrated that atorvastatin attenuates neuropathic pain through inhibition of cytokines, MMP-2, and NGF in sciatic nerve and spinal cord suggesting that atorvastatin could be an additional therapeutic strategy in management of neuropathic pain.


CCI neuropathic pain proinflammatory cytokines MMP-2 NGF atorvastatin 



3-Hydroxy-3-methyl-glutaryl-coenzyme A


Chronic constriction injury


Tumor necrosis factor-α


Interleukin-1 beta


Prostaglandin E2


Matrix metalloproteases


Nerve growth factor




Enzyme-linked immunosorbent assay


Dimethyl sulfoxide


Paw withdrawal threshold


Paw withdrawal latencies


Dorsal root ganglion


Central nervous system


Glial fibrillary acidic protein


Standard error of means


  1. 1.
    Shamash, S., and S. Rotshenker. 2002. The cytokine network of Wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β. Journal of Neuroscience 22: 3052–3060.PubMedGoogle Scholar
  2. 2.
    Lee, H.L., K.M. Lee, S.J. Son, S.H. Hwang, and H.J. Cho. 2004. Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. Neuroreport 15: 2807–2811.PubMedGoogle Scholar
  3. 3.
    Horai, R., S. Saijo, H. Tanioka, S. Nakae, K. Sudo, A. Okahara, T. Ikuse, M. Asano, and Y. Iwakura. 2000. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. The Journal of Experimental Medicine 191: 313–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Lindholm, D., R. Heumann, M. Meyer, and H. Thoenem. 1987. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330: 658–659.PubMedCrossRefGoogle Scholar
  5. 5.
    Kawasaki, Y., Z.Z. Xu, X. Wang, J.Y. Park, Z.Y. Zhuang, P.H. Tan, Y.J. Gao, K. Roy, G. Corfas, E.H. Lo, and R.R. Ji. 2008. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature Medicine 14: 331–336.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamaguchi, M., V. Jadhav, A. Obenaus, A. Colohan, and J.H. Zhang. 2007. Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery 61: 1067–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, Y., X.L. Deng, X.H. Xiao, and B.X. Yuan. 2007. A non-steroidal anti-inflammatory agent provides significant protection during focal ischemic stroke with decreased expression of matrix metalloproteinases. Current Neurovascular Research 4: 176–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonnington, J.K., and P.A. McNaughton. 2003. Signaling pathways involved in the sensitization of mouse nociceptive neurons by nerve growth factor. The Journal of Physiology 551: 433–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Gandhi, R., J.M. Ryals, and E. Douglas Wright. 2004. Neurotrophin-3 reverses chronic mechanical hyperalgesia induced by intramuscular acid injection. Journal of Neuroscience 24: 9405–9413.PubMedCrossRefGoogle Scholar
  10. 10.
    Ryschich, E., V. Kerkadze, O. Deduchovas, O. Salnikova, A. Parseliunas, A. Märten, W. Hartwig, M. Sperandio, and J. Schmidt. 2009. Intracapillary leukocyte accumulation as a novel antihemorrhagic mechanism in acute pancreatitis in mice. Gut 23: 243–254.Google Scholar
  11. 11.
    Smaldone, C., S. Brugaletta, V. Pazzano, and G. Liuzzo. 2009. Immunomodulator activity of 3-hydroxy-3-methilglutaryl-CoA inhibitors. Cardiovascular & Hematological Agents in Medicinal Chemistry 7: 279–294.CrossRefGoogle Scholar
  12. 12.
    Etminan, M., A. Samii, and J.M. Brophy. 2010. Statin use and risk of epilepsy. Neurology 75: 1496–1500.PubMedCrossRefGoogle Scholar
  13. 13.
    Naval, N.S., M.A. Mirski, and J.R. Carhuapoma. 2009. Impact of statins on validation of ICH mortality prediction models. Neurological Research 31: 425–429.PubMedCrossRefGoogle Scholar
  14. 14.
    Bösel, J., F. Gandor, C. Harms, M. Synowitz, U. Harms, P.C. Djoufack, D. Megow, U. Dirnagl, H. Hortnagl, K.B. Fink, and M. Endres. 2005. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurons. Journal of Neurochemistry 92: 1386–1398.PubMedCrossRefGoogle Scholar
  15. 15.
    Sierra, S., M.C. Ramos, P. Molina, J.A. Vazquez, and J.S. Burgos. 2011. Statins as neuroprotectants: a comparative in vivo study of lipophilicity, blood–brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. Journal of Alzheimer's Disease 23: 307–318.PubMedGoogle Scholar
  16. 16.
    Van der Most, P.J., A.M. Dolga, I.M. Nijholt, P.G. Luiten, and U.L. Eisel. 2009. Statins: mechanisms of neuroprotection. Progress in Neurobiology 88: 64–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Wu, H., D. Lu, H. Jiang, Y. Xiong, C. Qu, B. Li, A. Mahmood, D. Zhou, and M. Chopp. 2008. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. Journal of Neurotrauma 25: 130–139.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang, D., Y. Han, J. Zhang, M. Chopp, and D.M. Seyfried. 2012. Statins enhance expression of growth factors and activate the PI3K/Akt-mediated signaling pathway after experimental intracerebral hemorrhage. World Journal of Neuroscience. 2: 74–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Tartakover-Matalon, S., N. Cherepnin, M. Kuchuk, L. Drucker, I. Kenis, A. Fishman, M. Pomeranz, and M. Lishner. 2007. Impaired migration of trophoblast cells caused by simvastatin is associated with decreased membrane IGF-I receptor, MMP2 activity and HSP27 expression. Human Reproduction 22: 1161–1167.PubMedCrossRefGoogle Scholar
  20. 20.
    Massaro, M., A. Zampolli, E. Scoditti, M.A. Carluccio, C. Storelli, A. Distante, and R.D. Caterina. 2010. Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: anti-angiogenic actions possibly contributing to plaque stability. Cardiovascular Research 86: 311–320.PubMedCrossRefGoogle Scholar
  21. 21.
    Pan, H.C., D.Y. Yang, Y.C. Ou, S.P. Ho, F.C. Cheng, and C.J. Chen. 2010. Neuroprotective effect of atorvastatin in an experimental model of nerve crush injury. Neurosurgery 67: 376–389.PubMedCrossRefGoogle Scholar
  22. 22.
    Shi, X.Q., T.K.Y. Lim, S. Lee, Y.Q. Zhao, and J. Zhang. 2011. Statins alleviate experimental nerve injury-induced neuropathic pain. Pain 152: 1033–1043.PubMedCrossRefGoogle Scholar
  23. 23.
    Chu, L.W., J.Y. Chen, K.L. Yu, K.I. Cheng, P.C. Wu, and B.N. Wu. 2012. Neuroprotective and anti-inflammatory activities of atorvastatin in a rat chronic constriction injury model. International Journal of Immunopathology and Pharmacology 25: 219–30.PubMedGoogle Scholar
  24. 24.
    Bennett, G., and Y. Xie. 1988. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107.PubMedCrossRefGoogle Scholar
  25. 25.
    Randall, L.O., and J. Selitto. 1957. A method for measurement of analgesic activity of inflamed tissue. Archives Internationales de Pharmacodynamie et de Therapie 111: 209–219.Google Scholar
  26. 26.
    Hargreaves, K., R. Dubner, F. Brown, C. Flores, and J. Joris. 1988. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Youssef, S., O. Stuve, J.C. Patarroyo, P.J. Ruiz, J.L. Radosevich, E.M. Hur, M. Bravo, D.J. Mitchell, R.A. Sobel, L. Steinman, and S.S. Zamvil. 2002. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420: 78–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Stepien, K., M. Tomaszewski, and S.J. Czuczwar. 2005. Neuroprotective properties of statins. Pharmacological Reports 57: 561–569.PubMedGoogle Scholar
  29. 29.
    Muthuraman, A., and N. Singh. 2012. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. Journal of Ethnopharmacology 142: 723–731.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, Y.W., Y.T. Li, Y.C. Chen, Z.Y. Li, and C.H. Hung. 2012. Exercise training attenuates neuropathic pain and cytokine expression following chronic constriction injury of rat sciatic nerve. Anesthesia and Analgesia 114: 1330–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Sacerdote, P., S. Franchi, S. Moretti, M. Castelli, P. Procacci, V. Magnaghi, and A.E. Panerai. 2013. Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain. Journal of Neuroimmune Pharmacology 8: 202–211.PubMedCrossRefGoogle Scholar
  32. 32.
    Zelenka, M., M. Schafers, and C. Sommer. 2005. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 116: 257–263.PubMedCrossRefGoogle Scholar
  33. 33.
    Hao, S., M. Mata, J.C. Glorioso, and D.J. Fink. 2006. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Molecular Pain 2: 6.PubMedCrossRefGoogle Scholar
  34. 34.
    Schafers, M., and C. Sommer. 2007. Anticytokine therapy in neuropathic pain management. Expert Review of Neurotherapeutics 7: 1613–27.PubMedCrossRefGoogle Scholar
  35. 35.
    Sommer, C., J.A. Galbraith, H.M. Heckman, and R.R. Myers. 1993. Pathology of experimental compression neuropathy producing hyperesthesia. Journal of Neuropathology and Experimental Neurology 52: 223–233.PubMedCrossRefGoogle Scholar
  36. 36.
    Sommer, C., and M. Kress. 2004. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neuroscience Letters 361: 184–187.PubMedCrossRefGoogle Scholar
  37. 37.
    Uceyler, N., and C. Sommer. 2008. Cytokine regulation in animal models of neuropathic pain and in human diseases. Neuroscience Letters 437: 194–198.PubMedCrossRefGoogle Scholar
  38. 38.
    Samad, T.A., K.A. Moore, A. Sapirstein, S. Billet, A. Allchorne, S. Poole, J.V. Bonventre, and C.J. Woolf. 2001. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410: 471–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Moolwaney, A.S., and O.J. Igwe. 2005. Regulation of the cyclooxygenase-2 system by interleukin-1 beta through mitogen-activated protein kinase signaling pathways: a comparative study of human neuroglioma and neuroblastoma cells. Brain Research. Molecular Brain Research 137: 202–212.PubMedCrossRefGoogle Scholar
  40. 40.
    Wagner, R., and R.R. Myers. 1996. Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 7: 2897–2901.PubMedCrossRefGoogle Scholar
  41. 41.
    Muja, N., and G.H. DeVries. 2004. Prostaglandin E2 and 6-keto-prostaglandin F (1alpha) production is elevated following traumatic injury to sciatic nerve. GLIA 46: 116–129.PubMedCrossRefGoogle Scholar
  42. 42.
    Yaksh, T.L., D.M. Dirig, C.M. Conway, C. Svensson, Z.D. Luo, and P.C. Isakson. 2001. The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. Journal of Neuroscience 21: 5847–5853.PubMedGoogle Scholar
  43. 43.
    Takahashi, M., M. Kawaguchi, K. Shimada, N. Konishi, H. Furuya, and T. Nakashima. 2004. Cyclooxygenase-2 expression in Schwann cells and macrophages in the sciatic nerve after single spinal nerve injury in rats. Neuroscience Letters 363: 203–206.PubMedCrossRefGoogle Scholar
  44. 44.
    Durrenberger, P.F., P. Facer, M.A. Casula, Y. Yiangoul, R.A. Gray, I.P. Chessell, N.C. Day, S.D. Collins, S. Bingham, A.W. Wilson, D. Elliot, R. Birch, and P. Anand. 2006. Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study. BMC Neurology 6: 1–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Schönbeck, U., and P. Libby. 2004. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 109: 18–26.CrossRefGoogle Scholar
  46. 46.
    Santodomingo-Garzon, T., T.M. Cunha, W.A. Verri, D.A. Valerio, C.A. Parada, S. Poole, S.H. Ferreira, and F.Q. Cunha. 2006. Atorvastatin inhibits inflammatory hypernociception. British Journal of Pharmacology 149: 14–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Planavila, A., J.C. Laguna, and M. Vazquez-Carrera. 2005. Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation. Biochimica et Biophysica Acta 1687: 76–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Prasad, R., S. Giri, N. Nath, I. Singh, and A.K. Singh. 2005. Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial-monocyte cell interaction. Journal of Neurochemistry 94: 204–214.PubMedCrossRefGoogle Scholar
  49. 49.
    Ali, S., and D.A. Mann. 2004. Signal transduction via the NF-kappa pathway: a targeted treatment modality for infection, inflammation and repair. Cell Biochemistry and Function 22: 67–79.PubMedCrossRefGoogle Scholar
  50. 50.
    Wu, K.K. 2005. Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediators. Prostaglandins, Leukotrienes, and Essential Fatty Acids 72: 89–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Digicaylioglu, M., and S.A. Lipton. 2001. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412: 641–647.PubMedCrossRefGoogle Scholar
  52. 52.
    Cain, J.H., C. Baggott, J.I. Tilghman, S. Rajpal, G.S. Miranpuri, and D.K. Resnick. 2007. Recent developments in the study of spinal cord injury and neuropathic pain. Annals of Neuroscience. 14: 96–107.CrossRefGoogle Scholar
  53. 53.
    Folguerasa, A.R., T. Valdés-Sánchezb, E. Llanoa, L. Menéndezc, A. Baamondec, B.L. Denlingerd, C. Belmonted, L. Juárezc, A. Lastrac, O. García-Suáreze, A. Astudilloe, M. Kirsteinb, A.M. Pendása, I. Fariñasb, and C. López-Otína. 2009. Metalloproteinase MT5-MMP is an essential modulator of neuroimmune interactions in thermal pain stimulation. Proceedings of the National Academy of Sciences of the United States of America 106: 16451–16456.CrossRefGoogle Scholar
  54. 54.
    Agrawal, S.M., L. Lau, and V.W. Yong. 2008. MMPs in the central nervous system: where the good guys go bad. Seminars in Cell & Developmental Biology 19: 42–51.CrossRefGoogle Scholar
  55. 55.
    Buss, A., K. Pech, B.A. Kakulas, D. Martin, J. Schoenen, J. Noth, and G.A. Brook. 2007. Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC Neurology 7: 17.PubMedCrossRefGoogle Scholar
  56. 56.
    Hsu, J., R. McKeon, S. Goussev, Z. Werb, J.U. Lee, A. Trivedi, and L. Noble-Haeusslein. 2006. Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury. Journal of Neuroscience 26: 9841–9850.PubMedCrossRefGoogle Scholar
  57. 57.
    Ji, R.R., Z.Z. Xu, X. Wang, and E.H. Lo. 2009. Matrix metalloproteases regulation of neuropathic pain. Trends in Pharmacological Sciences 30: 336–340.PubMedCrossRefGoogle Scholar
  58. 58.
    Sommer, C., C. Schmidt, A. George, and K.V. Toyka. 1997. A metalloprotease-inhibitor reduces pain associated behavior in mice with experimental neuropathy. Neuroscience Letters 237: 45–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Dray, A. 2008. Neuropathic pain: emerging treatments. British Journal of Anaesthesia 101: 48–58.PubMedCrossRefGoogle Scholar
  60. 60.
    Lewin, G.R., A.M. Ritter, and L.M. Mendell. 1993. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. Journal of Neuroscience 13: 2136–2148.PubMedGoogle Scholar
  61. 61.
    Petty, B.G., D.R. Cornblath, B.T. Adornato, V. Chaudhry, C. Flexner, M. Wachsman, D. Sinicropi, L.E. Burton, and S.J. Perouka. 1994. The effect of systematically administered recombinant human nerve growth factor in healthy subjects. Annals of Neurology 36: 244–246.PubMedCrossRefGoogle Scholar
  62. 62.
    Ramer, M.S., M.D. Kawaja, J.T. Henderson, J.C. Roder, and M.A. Bisby. 1998. Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. Neuroscience Letters 251: 53–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Lewin, G.R., A. Rueff, and L.M. Mendell. 1994. Peripheral and central mechanisms of NGF-induced hyperalgesia. European Journal of Neuroscience 6: 1903–1912.PubMedCrossRefGoogle Scholar
  64. 64.
    Hao, J., T. Ebendal, X. Xu, Z. Wiesenfeld-Hallin, and M. Eriksdotter Jönhagen. 2000. Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neuroscience Letters 286: 208–212.PubMedCrossRefGoogle Scholar
  65. 65.
    Herzberg, U., E. Eliav, J.M. Dorsey, R.H. Gracely, and I.J. Kopin. 1997. NGF involvement in pain induced by chronic constriction injury of the rat sciatic nerve. Neuroreport 8: 1613–1618.PubMedCrossRefGoogle Scholar
  66. 66.
    Fukuoka, T., E. Kondo, Y. Dai, N. Hashimoto, and K. Noguchi. 2001. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. Journal of Neuroscience 21: 4891–900.PubMedGoogle Scholar
  67. 67.
    Gwak, Y.S., T.S. Nam, K.S. Paik, C.E. Hulsebosch, and J.W. Leem. 2003. Attenuation of mechanical hyperalgesia following spinal cord injury by administration of antibodies to nerve growth factor in the rat. Neuroscience Letters 336: 117–120.PubMedCrossRefGoogle Scholar
  68. 68.
    Paul, S. 2009. News and analysis, an audience with---Nature Reviews Drug Discovery 8: 14.PubMedCrossRefGoogle Scholar
  69. 69.
    Spranger, M., D. Lindholm, C. Bandtlow, R. Heumann, H. Gnahn, M. Nlher-Noe, and H. Thoenen. 1990. Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo. European Journal of Neuroscience 2: 69–16.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang, H., J.R. Lynch, P. Song, H.J. Yang, R.B. Yates, B. Mace, D.S. Warner, J.R. Guyton, and D.T. Laskowitz. 2007. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Experimental Neurology 206: 59–69.PubMedCrossRefGoogle Scholar
  71. 71.
    Gholami, M.R., F. Abolhassani, P. Pasbakhsh, M. Akbari, A. Sobhani, M.R. Eshraghian, N. Kamalian, F.A. Amoli, A.R. Dehpoor, and D. Sohrabi. 2008. The effects of simvastatin on ischemia-reperfusion injury of sciatic nerve in adult rats. European Journal of Pharmacology 590: 111–114.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen, G., S. Zhang, J. Shi, J. Ai, M. Qi, and C. Hang. 2009. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-κB pathway. Experimental Neurology 216: 398–406.PubMedCrossRefGoogle Scholar
  73. 73.
    Laufs, U., K. Gertz, P. Huang, G. Nickenig, M. Bohm, U. Dirnagl, and M. Endres. 2000. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31: 2442–2449.PubMedCrossRefGoogle Scholar
  74. 74.
    Amarenco, P., J. Bogousslavsky, A. Callahan, L.B. Goldstein, M. Hennerici, A.E. Rudolph, H. Sillesen, L. Simunovic, M. Szarek, K.M. Welch, and J.A. Zivin. 2006. High-dose atorvastatin after stroke or transient ischemic attack. The New England Journal of Medicine 355: 549–559.PubMedCrossRefGoogle Scholar
  75. 75.
    Barsantea, M.M., E. Roffe, C.M. Yokorob, W.L. Tafuric, D.G. Souzab, V. Pinhoa, M.S. Castrob, and M.M. Teixeira. 2005. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. European Journal of Pharmacology 516: 282–289.CrossRefGoogle Scholar
  76. 76.
    Weis, M., C. Heeschen, A.J. Glassford, and J.P. Cooke. 2002. Statins have biphasic effects on angiogenesis. Circulation 105: 739–45.PubMedCrossRefGoogle Scholar
  77. 77.
    McMahon, S.B., W.B. Cafferty, and F. Marchand. 2005. Immune and glial cell factors as pain mediators and modulators. Experimental Neurology 192: 444–462.PubMedCrossRefGoogle Scholar
  78. 78.
    Watkins, L.R., and S.F. Maier. 2002. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiological Reviews 82: 981–1011.PubMedGoogle Scholar
  79. 79.
    Mika, J., M. Osikowicz, E. Rojewska, M. Korostynski, A. Wawrzczak-Bargiela, R. Przewlocki, and B. Przewlocka. 2009. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. European Journal of Pharmacology 623: 65–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang, J., and Y. de Koninck. 2009. Central neuroglial interactions in the pathophysiology of neuropathic pain. In Functional pain syndromes: presentation and pathophysiology, ed. E.A. Mayer and M.C. Bushnell, 319–336. Seattle, WA: IASP Press.Google Scholar
  81. 81.
    Clarke, R.M., F. O'Connell, A. Lyons, and M.A. Lynch. 2007. The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1–42 in the rat hippocampus in vivo. Neuropharmacology 52: 136–145.PubMedCrossRefGoogle Scholar
  82. 82.
    Li, B., A. Mahmood, D. Lu, H. Wu, Y. Xiong, C. Qu, and M. Chopp. 2009. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 65: 179–185.PubMedCrossRefGoogle Scholar
  83. 83.
    Wu, H., A. Mahmood, D. Lu, H. Jiang, Y. Xiong, D. Zhou, and M. Chopp. 2009. Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury. Journal of Neurosurgery 113: 591–597.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nitya N. Pathak
    • 1
  • Venkanna Balaganur
    • 1
  • Madhu C. Lingaraju
    • 1
  • Amar S. More
    • 1
  • Vinay Kant
    • 1
  • Dhirendra Kumar
    • 1
  • Dinesh Kumar
    • 1
  • Surendra Kumar Tandan
    • 1
  1. 1.Division of Pharmacology and ToxicologyIndian Veterinary Research InstituteBareillyIndia

Personalised recommendations