The Expression of Inflammatory Cytokines on the Aorta Endothelia Are Up-regulated in Pinealectomized Rats

Abstract

This study was designed to investigate the effect of melatonin on the expression of aortic inflammatory cytokines and its underlying mechanisms in rats. Melatonin deficiency rats (Px, N = 16) were created by pinealectomy and were fed with normal diet for 16 weeks after the surgery, and compared with sham-operated rats (Con, N = 14). Serum lipid profile, glucose metabolism parameters, serum oxidative stress and inflammatory biomarkers were evaluated. The expression of inflammatory cytokines in the aorta endothelia was analyzed. To evaluate the signal transduction pathways of melatonin on the expression of cytokines, rat aortic endothelial cell lines (RAECs) were treated with melatonin, and their protein expressions of inflammatory cytokines and phosphorylation levels of relevant signal pathways were detected. At the 16th week after surgery in Px rats, their serum triglyceride, very low density lipoprotein cholesterol, free fatty acid and glucose levels were prominently elevated (all P < 0.05); serum oxidative stress biomarker malondialdehyde, serum inflammatory biomarkers oxidized low-density lipoprotein, tumor necrosis factor-α, interleukin-6 and C reactive protein were also significantly increased. Meanwhile, the expression of inflammatory cytokines: monocyte chemotactic protein-1 (MCP-1), vascular adhesion molecule 1 (VCAM-1) and matrix metalloproteinase-9 (MMP-9) of the aorta endothelia in Px rats were significantly up-regulated (all P < 0.05). In vitro, melatonin significantly decreased the expression of MCP-1, VCAM-1 and MMP-9 proteins, along with the suppression of phosphorylation levels of nuclear factor κB (NF-κB)/P65 and p38 mitogen-activated protein kinase (P38-MAPK) in RAECs. Melatonin deficiency elevates the serum inflammatory biomarkers and increases aortic inflammatory responses. Melatonin regulates these inflammatory responses by NF-κB and P38-MAPK involved pathways.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Usui, T., M. Okada, Y. Hara, et al. 2012. Death-associated protein kinase 3 mediates vascular inflammation and development of hypertension in spontaneously hypertensive rats. Hypertension 60: 1031–1039.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Seijkens, T., P. Kusters, D. Engel, et al. 2013. CD40-CD40L: Linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diabetes & Vascular Disease Research 10: 115–122.

    Article  Google Scholar 

  3. 3.

    Arzamastsev, D.D., A.A. Karpenko, and G.I. Kostiuchenko. 2012. Inflammation of the vascular wall and hyperhomocysteinemia in patients with atherosclerosis obliterans of lower limb arteries. Angiol Sosud Khir 18: 27–30.

    PubMed  CAS  Google Scholar 

  4. 4.

    Tsimikas, S., and Y.I. Miller. 2011. Oxidative modification of lipoproteins: Mechanisms, role in inflammation and potential clinical applications in cardiovascular disease. Current Pharmaceutical Design 17: 27–37.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Chen, B., D. Guan, Z.J. Cui, et al. 2010. Thioredoxin 1 downregulates MCP-1 secretion and expression in human endothelial cells by suppressing nuclear translocation of activator protein 1 and redox factor-1. American Journal of Physiology. Cell Physiology 298: C1170–C1179.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Jia, Y., P. Gao, H. Chen, et al. 2013. SIRT1 suppresses PMA and ionomycin-induced ICAM-1 expression in endothelial cells. Science China. Life Sciences 56: 19–25.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Zhang, F., J. Ren, K. Chan, et al. 2013. Angiotensin-(1–7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells. Biochemical and Biophysical Research Communications 430: 642–646.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Cossette, E., I. Cloutier, K. Tardif, et al. 2013. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein. Molecular and Cellular Biochemistry 373: 137–147.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Karasek, M., and K. Winczyk. 2006. Melatonin in humans. Journal of Physiology and Pharmacology 57(Suppl 5): 19–39.

    PubMed  Google Scholar 

  10. 10.

    Drugs for sleep disorders: Mechanisms and therapeutic prospects. British Journal of Clinical Pharmacology 2006; 61:761–766.

    Google Scholar 

  11. 11.

    Szczepanik, M. 2007. Melatonin and its influence on immune system. Journal of Physiology and Pharmacology 58(Suppl 6): 115–124.

    PubMed  Google Scholar 

  12. 12.

    Shirazi, A., G. Ghobadi, and M. Ghazi-Khansari. 2007. A radiobiological review on melatonin: A novel radioprotector. J Radiat Res (Tokyo) 48: 263–272.

    Article  CAS  Google Scholar 

  13. 13.

    Mj, R.-L. 2010. Cano P, Jimenez-Ortega V et al. Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. Journal of Pineal Research 49: 342–348.

    Article  Google Scholar 

  14. 14.

    Grinenko, T.N., M.F. Balliuzek, and T.V. Kvetnaia. 2012. Melatonin as a marker of intensity of structural and functional changes in the heart and vessels of the patients presenting with metabolic syndrome. Klin Med (Mosk) 90: 30–34.

    CAS  Google Scholar 

  15. 15.

    Agil, A., R.J. Reiter, A. Jimenez-Aranda, et al. 2012. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. Journal of Pineal Research 54: 381–388.

    Google Scholar 

  16. 16.

    Maganhin, C.C., R.S. Simoes, L.F. Fuchs, et al. 2009. Rat pinealectomy: A modified direct visual approach. Acta Cirúrgica Brasileira 24: 321–324.

    PubMed  Article  Google Scholar 

  17. 17.

    Lepara, O., A. Valjevac, A. Alajbegovic, et al. 2009. Decreased serum lipids in patients with probable Alzheimer's disease. Bosnian Journal of Basic Medical Sciences 9: 215–220.

    PubMed  Google Scholar 

  18. 18.

    Mania, M., L. Javashvili, S. Kasradze, et al. 2011. Fasting insulin and HOMA-index changes in patients treated with valproic acid. Georgian Medical News 199: 48–52.

    PubMed  Google Scholar 

  19. 19.

    Zhang, C., H. Zheng, Q. Yu, et al. 2010. A practical method for quantifying atherosclerotic lesions in rabbits. Journal of Comparative Pathology 142: 122–128.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Nishida, S., R. Sato, I. Murai, et al. 2003. Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats. Journal of Pineal Research 35: 251–256.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Yamamura, T., and M. Ishigami. 2010. Cutting-edge research on the metabolism of remnant lipoproteins. Rinsho Byori 58: 613–621.

    PubMed  CAS  Google Scholar 

  22. 22.

    Pu, D.R., and L. Liu. 2007. Remnant like particles may induce atherosclerosis via accelerating endothelial progenitor cells senescence. Medical Hypotheses 69: 293–296.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Bush, N.C., R. Basu, R.A. Rizza, et al. 2012. Insulin-mediated FFA suppression is associated with triglyceridemia and insulin sensitivity independent of adiposity. Journal of Clinical Endocrinology and Metabolism 97: 4130–4138.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Peschke, E. 2008. Melatonin, endocrine pancreas and diabetes. Journal of Pineal Research 44: 26–40.

    PubMed  CAS  Google Scholar 

  25. 25.

    Korkmaz, A., R.J. Reiter, T. Topal, et al. 2009. Melatonin: An established antioxidant worthy of use in clinical trials. Molecular Medicine 15: 43–50.

    PubMed  CAS  Google Scholar 

  26. 26.

    Kaneko, S., K. Okumura, Y. Numaguchi, et al. 2000. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sciences 67: 101–112.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Dominguez-Rodriguez, A., P. Abreu-Gonzalez, and P. Avanzas. 2012. The role of melatonin in acute myocardial infarction. Frontiers in Bioscience 17: 2433–2441.

    Article  Google Scholar 

  28. 28.

    Mogulkoc, R., A.K. Baltaci, L. Aydin, et al. 2005. Pinealectomy inhibits antioxidant system in rats with hyperthyroidism. Neuro Endocrinology Letters 26: 795–798.

    PubMed  CAS  Google Scholar 

  29. 29.

    Chen, S.J., C.H. Yen, Y.C. Huang, et al. 2012. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome. PLoS One 7: e45693.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Itabe, H. 2009. Oxidative modification of LDL: Its pathological role in atherosclerosis. Clinical Reviews in Allergy & Immunology 37: 4–11.

    Article  CAS  Google Scholar 

  31. 31.

    Bruunsgaard, H., P. Skinhoj, A.N. Pedersen, et al. 2000. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clinical and Experimental Immunology 121: 255–260.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Nishida, M., T. Moriyama, K. Ishii, et al. 2007. Effects of IL-6, adiponectin, CRP and metabolic syndrome on subclinical atherosclerosis. Clinica Chimica Acta 384: 99–104.

    Article  CAS  Google Scholar 

  33. 33.

    Sekalska, B. 2003. Aortic expression of monocyte chemotactic protein-1 (MCP-1) gene in rabbits with experimental atherosclerosis. Annales Academiae Medicae Stetinensis 49: 79–90.

    PubMed  CAS  Google Scholar 

  34. 34.

    Ling, S., L. Nheu, and P.A. Komesaroff. 2012. Cell adhesion molecules as pharmaceutical target in atherosclerosis. Mini Reviews in Medicinal Chemistry 12: 175–183.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Valastyan, S., and R.A. Weinberg. 2011. Roles for microRNAs in the regulation of cell adhesion molecules. Journal of Cell Science 124: 999–1006.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Arnett, D.K., R.L. Mcclelland, A. Bank, et al. 2011. Biomarkers of inflammation and hemostasis associated with left ventricular mass: The Multiethnic Study of Atherosclerosis (MESA). Int J Mol Epidemiol Genet 2: 391–400.

    PubMed  CAS  Google Scholar 

  37. 37.

    Thompson, W.L., and L.J. Van Eldik. 2009. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFκB and MAPK dependent pathways in rat astrocytes [corrected]. Brain Research 1287: 47–57.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Loizou, S., S. Paraschos, S. Mitakou, et al. 2009. Chios mastic gum extract and isolated phytosterol tirucallol exhibit anti-inflammatory activity in human aortic endothelial cells. Experimental Biology and Medicine (Maywood, N.J.) 234: 553–561.

    Article  CAS  Google Scholar 

  39. 39.

    Li, W., H. Li, A.D. Bocking, et al. 2010. Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-NFKB and MAPK1/3 pathway. Biology of Reproduction 83: 481–487.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Tang, Z., L. Jiang, J. Peng, et al. 2012. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. International Journal of Molecular Medicine 30: 931–938.

    PubMed  CAS  Google Scholar 

  41. 41.

    Qin, W., W. Lu, H. Li, et al. 2012. Melatonin inhibits IL1beta-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-kappaB activation. Journal of Endocrinology 214: 145–153.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Chen, Xl, Dodd G, Kunsch C. 2009. Sulforaphane inhibits TNF-alpha-induced activation of p38 MAP kinase and VCAM-1 and MCP-1 expression in endothelial cells. Inflammation Research 58: 513–521.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Aomatsu, T., H. Imaeda, K. Takahashi, et al. 2012. Tacrolimus (FK506) suppresses TNF-alpha-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts. International Journal of Molecular Medicine 30: 1152–1158.

    PubMed  CAS  Google Scholar 

  44. 44.

    Choi, H.J., T.W. Chung, J.E. Kim, et al. 2012. Aesculin inhibits matrix metalloproteinase-9 expression via p38 mitogen activated protein kinase and activator protein 1 in lipopolysaccharide-induced RAW264.7 cells. International Immunopharmacology 14: 267–274.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Dong, Y.J., C.H. Ding, W.W. GU, et al. 2010. Inhibitory effects of melatonin on the expression of phosphorylation p38 mitogen-activated protein kinase during acute lung injury in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 22: 418–421.

    PubMed  CAS  Google Scholar 

  46. 46.

    Esposito, E., T. Genovese, R. Caminiti, et al. 2009. Melatonin reduces stress-activated/mitogen-activated protein kinases in spinal cord injury. Journal of Pineal Research 46: 79–86.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Yan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Liu, X., Wang, W. et al. The Expression of Inflammatory Cytokines on the Aorta Endothelia Are Up-regulated in Pinealectomized Rats. Inflammation 36, 1363–1373 (2013). https://doi.org/10.1007/s10753-013-9676-1

Download citation

KEY WORDS

  • melatonin
  • endothelial inflammation
  • inflammatory cytokines
  • signal pathways