Skip to main content
Log in

Predicting Sputum Eosinophilia in Exacerbations of COPD Using Exhaled Nitric Oxide

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Fractional exhaled nitric oxide (FENO) may be a pulmonary biomarker in chronic obstructive pulmonary disease (COPD). In this prospective study, the relationship between FENO and airway inflammation was assessed in COPD exacerbations. FENO and lung function were measured, and sputum was collected from 49 ex-smoking COPD patients, first at the time of hospital admission and again at discharge following treatment. There was a significant positive correlation between the percentage of sputum eosinophils and FENO concentrations, both at exacerbation (r = 0.593, p < 0.001) and discharge (r = 0.337, p = 0.044). The increase in forced expiratory volume in one second (FEV1) after treatment was greater in patients with sputum eosinophilia (ΔFEV1 0.35 ± 0.12 vs. 0.13 ± 0.04 L, p = 0.046), and FENO was a strong predictor of sputum eosinophilia (area under the receiver operating characteristic curve, 0.89). The optimum cut point was 19 parts per billion (sensitivity: 90 %; specificity: 74 %). Our data suggest that FENO is a good surrogate marker of eosinophilic inflammation in COPD patients with exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taylor, D.R., M.W. Pijnenburg, A.D. Smith, and J.C. De Jongste. 2006. Exhaled nitric oxide measurements: Clinical application and interpretation. Thorax 61: 817–827.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes, P.J., R.A. Dweik, A.F. Gelb, P.G. Gibson, S.C. George, H. Grasemann, et al. 2010. Exhaled nitric oxide in pulmonary diseases: A comprehensive review. Chest 138: 682–692.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes, P.J., B. Chowdhury, S.A. Kharitonov, H. Magnussen, C.P. Page, and D. Postma. 2006. Pulmonary biomarkers in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 174: 6–14.

    Article  PubMed  CAS  Google Scholar 

  4. Dummer, J.F., and D.R. Taylor. 2010. Defining the role of exhaled nitric oxide measurements in COPD. Respirology 15: 385–386.

    Article  PubMed  Google Scholar 

  5. Antus, B., I. Barta, I. Horvath, and E. Csiszer. 2010. Relationship between exhaled nitric oxide and treatment response in COPD patients with exacerbations. Respirology 15: 472–477.

    Article  PubMed  Google Scholar 

  6. Bathoorn, E., H. Kerstjens, D. Postma, W. Timens, and W. MacNee. 2008. Airways inflammation and treatment during acute exacerbations of COPD. International Journal of Chronic Obstructive Pulmonary Disease 3: 217–229.

    PubMed  Google Scholar 

  7. Papi, A., M. Romagnoli, S. Baraldo, F. Braccioni, I. Guzzinati, M. Saetta, et al. 2000. Partial reversibility of airflow limitation and increased exhaled NO and sputum eosinophilia in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 162: 1773–1777.

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto, K., K. Kubo, H. Yamamoto, S. Yamaguchi, and Y. Matsuzawa. 1999. Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest 115: 697–702.

    Article  PubMed  CAS  Google Scholar 

  9. Pizzichini, E., M.M. Pizzichini, P. Gibson, K. Parameswaran, G.J. Gleich, L. Berman, et al. 1998. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. American Journal of Respiratory and Critical Care Medicine 158: 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  10. Brightling, C.E., W. Monteiro, R. Ward, D. Parker, M.D. Morgan, and A.J. Wardlaw. 2000. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: A randomised controlled trial. Lancet 356: 1480–1485.

    Article  PubMed  CAS  Google Scholar 

  11. Rabe, K.F., S. Hurd, A. Anzueto, P.J. Barnes, S.A. Buist, P. Calverley, et al. 2007. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD Executive Summary. American Journal of Respiratory and Critical Care Medicine 176: 532–555.

    Article  PubMed  Google Scholar 

  12. Miller, M.R., J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, et al. 2005. ATS/ERS Task Force. Standardisation of spirometry. European Respiratory Journal 26: 319–338.

    Article  PubMed  CAS  Google Scholar 

  13. ATS/ERS. 2005. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. American Journal of Respiratory and Critical Care Medicine 171: 912–930.

    Article  Google Scholar 

  14. Antus, B., I. Barta, E. Csiszer, and K. Kelemen. 2012. Exhaled breath condensate pH in patients with cystic fibrosis. Inflammation Research 61: 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  15. Hanley, J.A., and B.J. McNeil. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29–36.

    PubMed  CAS  Google Scholar 

  16. Fabbri, L.M., M. Romagnoli, L. Corbetta, G. Casoni, K. Busljetic, G. Turato, et al. 2003. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 167: 418–424.

    Article  PubMed  Google Scholar 

  17. Oh, M.J., J.Y. Lee, B.J. Lee, and D.C. Choi. 2008. Exhaled nitric oxide measurement is useful for the exclusion of nonasthmatic eosinophilic bronchitis in patients with chronic cough. Chest 134: 990–995.

    Article  PubMed  CAS  Google Scholar 

  18. Papi, A., C.M. Bellettato, F. Braccioni, M. Romagnoli, P. Casolari, G. Caramori, et al. 2006. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. American Journal of Respiratory and Critical Care Medicine 173: 1114–1121.

    Article  PubMed  Google Scholar 

  19. Bafadhel, M., S. McKenna, S. Terry, V. Mistry, C. Reid, P. Haldar, et al. 2011. Acute exacerbations of COPD: Identification of biological clusters and their biomarkers. American Journal of Respiratory and Critical Care Medicine 184: 662–671.

    Article  PubMed  Google Scholar 

  20. Ferreira, I.M., M.S. Hazari, C. Gutierrez, V. Mistry, C. Reid, and P. Haldar. 2001. Exhaled nitric oxide and hydrogen peroxide in patients with chronic obstructive pulmonary disease: Effects of inhaled beclomethasone. American Journal of Respiratory and Critical Care Medicine 164: 1012–1015.

    Article  PubMed  CAS  Google Scholar 

  21. Zietkowski, Z., I. Kucharewicz, and A. Bodzenta-Lukaszyk. 2005. The influence of inhaled corticosteroids on exhaled nitric oxide in stable chronic obstructive pulmonary disease. Respiratory Medicine 99: 816–824.

    Article  PubMed  CAS  Google Scholar 

  22. Shim, C., D.E. Stover, and M.H. Williams Jr. 1978. Response to corticosteroids in chronic bronchitis. The Journal of Allergy and Clinical Immunology 62: 363–367.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, J., A. Sandrini, M.C. Thurston, D.H. Yates, and P.S. Thomas. 2007. Nitric oxide and exhaled breath nitrite/nitrates in chronic obstructive pulmonary disease patients. Respiration 74: 617–623.

    Article  PubMed  CAS  Google Scholar 

  24. Bathoorn, E., J.J. Liesker, D.S. Postma, G.H. Koëter, M. van der Toorn, and S. van der Heide. 2009. Change in inflammation in out-patient COPD patients from stable phase to a subsequent exacerbation. International Journal of Chronic Obstructive Pulmonary Disease 4: 101–109.

    Article  PubMed  Google Scholar 

  25. Bathoorn, E., J. Liesker, D. Postma, G. Koëter, A.J. van Oosterhout, and H.A. Kerstjens. 2007. Safety of sputum induction during exacerbations of COPD. Chest 131: 432–438.

    Article  PubMed  Google Scholar 

  26. Holz, O., T. Seiler, A. Karmeier, J. Fraedrich, H. Leiner, and H. Magnussen. 2008. Assessing airway inflammation in clinical practice—Experience with spontaneous sputum analysis. BMC Pulmonary Medicine 8: 5.

    Article  PubMed  Google Scholar 

  27. Siva, R., R.H. Green, C.E. Brightling, M. Shelley, B. Hargadon, and S. McKenna. 2007. Eosinophilic airway inflammation and exacerbations of COPD: A randomised controlled trial. European Respiratory Journal 29: 906–913.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Mikoss and J. Hernadi (National Koranyi Institute of TB and Pulmonology) for their technical assistance in sputum processing and FENO measurements. The study was supported by the Hungarian Respiratory Foundation and the Hungarian National Scientific Foundation (OTKA K83338). Dr. B. Antus is a recipient of Bolyai Janos Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balazs Antus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soter, S., Barta, I. & Antus, B. Predicting Sputum Eosinophilia in Exacerbations of COPD Using Exhaled Nitric Oxide. Inflammation 36, 1178–1185 (2013). https://doi.org/10.1007/s10753-013-9653-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9653-8

KEY WORDS

Navigation