Skip to main content
Log in

Plasma Levels of Interleukin 18, Interleukin 10, and Matrix Metalloproteinase-9 and -137G/C Polymorphism of Interleukin 18 Are Associated with Incidence of In-stent Restenosis After Percutaneous Coronary Intervention

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study aims to investigate the relationship between the levels of IL-18, IL-10, and MMP-9 and -137G/C polymorphism of interleukin 18 with the risk of in-stent restenosis (ISR). The study population consisted of 68 patients with ISR, 173 in non-ISR group, treated with drug-eluting stent and evaluated by coronary angiography post-procedure and at follow-up, and also 109 without angiographic evidence of coronary artery disease (CAD) which formed a reference control group (non-CAD group). The sequential plasma IL-18, IL-10, and MMP-9 levels were assessed at admission, 24 h, and 2 weeks after percutaneous coronary intervention. The -137G/C polymorphism of IL-18 was genotyped by the ligase detection reaction-polymerase chain reaction. Plasma IL-18 and MMP-9 increased significantly from admission, peaking after 24 h and fall after 2 weeks. Compared with the non-ISR group, the ISR group had higher levels of IL-18 and MMP-9, but IL-10 level was the opposite. The -137GG genotype of IL-18 was significantly higher than of the CG and CC genotypes. A significant higher frequency of -137G allele or GG genotype of IL-18 was observed in patients with ISR group compared with the non-ISR group. There is correlation between the changes of IL-18, IL-10, MMP-9, and ISR. IL-18 promoter -137G/C polymorphism influences IL-18 levels and the susceptibility to ISR, suggesting that IL-18-mediated pathways are causally involved in the process of ISR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Libby, P., P.M. Ridker, and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105: 1135–1143.

    Article  PubMed  CAS  Google Scholar 

  2. Mulvihill, N.T., and J.B. Foley. 2002. Inflammation in acute coronary syndromes. Heart 87: 201–204.

    Article  PubMed  CAS  Google Scholar 

  3. Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: 1685–1695.

    Article  PubMed  CAS  Google Scholar 

  4. Packard, R.R., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54: 24–38.

    Article  PubMed  CAS  Google Scholar 

  5. Zernecke, A., E. Shagdarsuren, and C. Weber. 2008. Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28: 1897–1908.

    Article  PubMed  CAS  Google Scholar 

  6. Reddy, P. 2004. Interleukin-18: recent advances. Curr Opin Hematol 11: 405–410.

    Article  PubMed  CAS  Google Scholar 

  7. Stoll, S., H. Jonuleit, E. Schmitt, et al. 1998. Production of functional IL-18 by different subtypes of murine and human dendritic cells(DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol 28: 3231–3239.

    Article  PubMed  CAS  Google Scholar 

  8. Bobryshev, Y.V. 2000. Dendritic cells and their involvement in atherosclerosis. Curr Opin Lipidol 11: 511–517.

    Article  PubMed  CAS  Google Scholar 

  9. Gerdes, N., G.K. Sukhova, P. Libby, et al. 2002. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages; implications for atherogenesis. J Exp Med 195: 245–257.

    Article  PubMed  CAS  Google Scholar 

  10. Maffia, P., G. Grassia, P. Di Meglio, et al. 2006. Neutralization of interleukin-18 inhibits neointimal formation in a rat model of vascular injury. Circulation 114: 430–437.

    Article  PubMed  CAS  Google Scholar 

  11. Chandrasekar, B., K. Vemula, R.M. Surabhi, et al. 2004. Activation of intrinsic and extrinsic proapoptotic signaling pathways in interleukin-18-mediated human cardiac endothelial cell death. J Biol Chem 279: 20221–20233.

    Article  PubMed  CAS  Google Scholar 

  12. Chandrasekar, B., A.J. Valente, G.L. Freeman, et al. 2006. Interleukin-18 induces human cardiac endothelial cell death via a novel signaling pathway involving NF-kappaB-dependent PTEN activation. Biochem Biophys Res Commun 339: 956–963.

    Article  PubMed  CAS  Google Scholar 

  13. Chandrasekar, B., S. Mummidi, L. Mahimainathan, et al. 2006. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. J Biol Chem 281: 15099–15109.

    Article  PubMed  CAS  Google Scholar 

  14. Whitman, S.C., P. Ravisankar, and A. Daugherty. 2002. Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res 90: E34–E38.

    Article  PubMed  CAS  Google Scholar 

  15. de Nooijer, R., J. von der Thusen, C.J. Verkleij, et al. 2004. Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler Thromb Vasc Biol 24: 2313–2319.

    Article  PubMed  Google Scholar 

  16. Tiret, L., T. Godefroy, E. Lubos, et al. 2005. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 112(5): 643–650.

    Article  PubMed  CAS  Google Scholar 

  17. Giedraitis, V., B. He, W.X. Huang, et al. 2001. Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol 112(1–2): 146–152.

    Article  PubMed  CAS  Google Scholar 

  18. Liu, W., Q. Tang, H. Jiang, et al. 2009. Promoter polymorphism of interleukin-18 in angiographically proven coronary artery disease. Angiology 60(2): 180–185.

    PubMed  Google Scholar 

  19. Grutz, G. 2005. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 77: 3–15.

    PubMed  Google Scholar 

  20. Nishihira, K., T. Imamura, A. Yamashita, et al. 2006. Increased expression of interleukin-10 in unstable plaque obtained by directional coronary atherectomy. Eur Heart J 27: 1685–1689.

    Article  PubMed  CAS  Google Scholar 

  21. Galis, Z.S., G.K. Sukhova, M.W. Lark, and P. Libby. 1994. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503.

    Article  PubMed  CAS  Google Scholar 

  22. Blankenberg, S., H.J. Rupprecht, O. Poirier, C. Bickel, and F. Cambien. 2003. Tiret L:Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107: 1579–1585.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, S.A., D.D. Dykes, and H.F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3): 1215.

    Article  PubMed  CAS  Google Scholar 

  24. Gaunt, T.R., S. Rodriguez, and I.N. Day. 2007. Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool ‘Cubex’. BMC Bioinform. 8: 428.

    Article  Google Scholar 

  25. Hoffmann, R., and G.S. Mintz. 2000. Coronary in-stent restenosis-predictors, treatment and prevention. Eur Heart J 21: 1739–1749.

    Article  PubMed  CAS  Google Scholar 

  26. Mitra, A.K., and D.K. Agrawal. 2006. In stent restenosis: bane of the stent era. J Clin Pathol 59: 232–239.

    Article  PubMed  CAS  Google Scholar 

  27. Shah, S.H., E.R. Hauser, D. Crosslin, et al. 2008. ALOX5AP variants are associated with in-stent restenosis after percutaneous coronary intervention. Atherosclerosis 201(1): 148–154.

    Article  PubMed  CAS  Google Scholar 

  28. Oguri, M., K. Kato, T. Hibinot, et al. 2007. Identification of a polymorphism of UCP3 associated with recurrent in-stent restenosis of coronary arteries. Int J Mol Med 20: 533–538.

    PubMed  CAS  Google Scholar 

  29. Miranda-Malpica, E., M.A. Martinez-Rios, J.M. Fragoso, et al. 2008. The interleukin 1B-511 polymorphism is associated with the risk of developing restenosis after coronary stenting in Mexican patients. Hum Immunol 69: 116–121.

    Article  PubMed  CAS  Google Scholar 

  30. Okamura, H., H. Tsutsui, S. Kashiwamura, et al. 1998. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70: 281–312.

    Article  PubMed  CAS  Google Scholar 

  31. Szmitko, P.E., C.H. Wang, R.D. Weisel, et al. 2003. New markers of inflammation and endothelial cell activation: partI. Circulation 108: 1917–1923.

    Article  PubMed  Google Scholar 

  32. Mallat, Z., A. Corbaz, A. Scoazec, et al. 2001. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104: 1598–1603.

    Article  PubMed  CAS  Google Scholar 

  33. Chandrasekar, B., S. Mummidi, L. Mahimainathan, et al. 2006. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. Biol Chem 281: 15099–15109.

    Article  CAS  Google Scholar 

  34. Liang, X.H., W. Cheung, C.K. Heng, et al. 2005. Reduced transcriptional activity in individuals with IL-18 gene variants detected from functional but not association study. Biochem Biophys Res Commun 338: 736–741.

    Article  PubMed  CAS  Google Scholar 

  35. Laurent, J., L.J. Feldman, L. Aguirre, et al. 2000. Interleukin-10 inhibits intimal hyperplasia after angioplasty or stent implantation in hypercholesterolemic rabbits. Circulation 101: 908–916.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Liu, Y., Jiang, H. et al. Plasma Levels of Interleukin 18, Interleukin 10, and Matrix Metalloproteinase-9 and -137G/C Polymorphism of Interleukin 18 Are Associated with Incidence of In-stent Restenosis After Percutaneous Coronary Intervention. Inflammation 36, 1129–1135 (2013). https://doi.org/10.1007/s10753-013-9647-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9647-6

KEY WORDS

Navigation