Skip to main content

Advertisement

Log in

GRO-α/CXCR2 System and ADAM17 Correlated Expression in Sjögren’s Syndrome

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The chemokine GRO-α and its receptor CXCR2 are associated with the chronic inflammation in Sjögren’s syndrome (SS). To better understand the molecular mechanisms by which the GRO-α/CXCR2 system is involved in the SS inflammatory condition, our studies were designed to clarify the role of ADAM17 activation in the modulation of the GRO-α/CXCR2 chemokine system in epithelial cells (SGEC) from SS salivary glands. The CXCR2 overexpression observed in SS SGEC was dramatically decreased by ADAM17 inhibitor TAPI-1. In addition, comparing the expression levels of ADAM17 in healthy SGEC in presence or not of GRO-α treatment, we observed that GRO-α dose-dependently influences ADAM17 activation, an effect that was inhibited by blocking the interaction of GRO-α with its CXCR2 receptor. Our data show for the first time that ADAM17 has an important role in GRO-α/CXCR2 system activity regulation, suggesting that regulating CXCR2/ADAM17 interaction could be an attractive therapeutic target in SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gallo, A., C. Baldini, L. Teos, M. Mosca, S. Bombardieri, and I. Alevizos. 2012. Emerging trends in Sjögren's syndrome: basic and translational research. Clinical and Experimental Rheumatology 30: 779–784.

    PubMed  Google Scholar 

  2. Mostafa, S., V. Seamon, and A.M. Azzarolo. 2012. Influence of sex hormones and genetic predisposition in Sjögren's syndrome: a new clue to the immunopathogenesis of dry eye disease. Experimental Eye Research 96: 88–97.

    Article  PubMed  CAS  Google Scholar 

  3. Tzioufas, A.G., and M. Voulgarelis. 2007. Update on Sjögren's syndrome autoimmune epithelitis: from classification to increased neoplasias. Best Practice & Research. Clinical Rheumatology 21: 989–1010.

    Article  CAS  Google Scholar 

  4. Sisto, M., S. Lisi, D.D. Lofrumento, M. D'Amore, M.A. Frassanito, and D. Ribatti. 2012. Sjögren's syndrome pathological neovascularization is regulated by VEGF-A-stimulated TACE-dependent crosstalk between VEGFR2 and NF-κB. Genes and Immunity 13: 411–420.

    Article  PubMed  CAS  Google Scholar 

  5. Lisi, S., M. Sisto, D.D. Lofrumento, and M. D'Amore. 2012. Sjögren's syndrome autoantibodies provoke changes in gene expression profiles of inflammatory cytokines triggering a pathway involving TACE/NF-κB. Laboratory Investigation 92: 615–624.

    Article  PubMed  CAS  Google Scholar 

  6. Sisto, M., S. Lisi, D.D. Lofrumento, G. Ingravallo, V. Mitolo, and M. D'Amore. 2012. Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren's syndrome salivary glands. Histochemistry and Cell Biology 134: 345–353.

    Article  Google Scholar 

  7. Lisi, S., M. Sisto, D.D. Lofrumento, L. Cucci, M.A. Frassanito, V. Mitolo, and M. D'Amore. 2010. Pro-inflammatory role of anti-Ro/SSA autoantibodies through the activation of Furin-TACE-amphiregulin axis. Journal of Autoimmunity 35: 160–170.

    Article  PubMed  CAS  Google Scholar 

  8. Sisto, M., S. Lisi, D.D. Lofrumento, S. Caprio, V. Mitolo, and M. D'Amore. 2010. TNF blocker drugs modulate human TNF-α-converting enzyme pro-domain shedding induced by autoantibodies. Immunobiology 215: 874–883.

    Article  PubMed  CAS  Google Scholar 

  9. Sisto, M., S. Lisi, D.D. Lofrumento, M.A. Frassanito, L. Cucci, S. D'Amore, V. Mitolo, and M. D'Amore. 2009. Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies. International Immunology 21: 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  10. Sisto, M., S. Lisi, D.D. Lofrumento, M. D'Amore, and D. Ribatti. 2012. Neuropilin-1 is upregulated in Sjögren's syndrome and contributes to pathological neovascularization. Histochemestry of Cell Biology 137: 669–677.

    Article  CAS  Google Scholar 

  11. Sorokin, L. 2010. The impact of the extracellular matrix on inflammation. Nature Review Immunology 10: 712–723.

    Article  CAS  Google Scholar 

  12. Klein, T., and R. Bischoff. 2011. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41: 271–290.

    Article  PubMed  CAS  Google Scholar 

  13. Garton, K.J., P.J. Gough, and E.W. Raines. 2006. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. Journal of Leukocyte Biology 79: 1105–1106.

    Article  PubMed  CAS  Google Scholar 

  14. Black, R.A., C.T. Rauch, C.J. Kozlosky, J.J. Peschon, J.L. Slack, M.F. Wolfson, B.J. Castner, K.L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K.A. Schooley, M. Gerhart, R. Davis, J.N. Fitzner, R.S. Johnson, R.J. Paxton, C.J. March, and D.P. Cerretti. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385: 729–732.

    Article  PubMed  CAS  Google Scholar 

  15. Reutershan, J. 2006. CXCR2—the receptor to hit? Drug News Perspective 19: 615–623.

    Article  CAS  Google Scholar 

  16. Lisi, S., M. Sisto, D.D. Lofrumento, and M. D'Amore. 2012. Altered IκBα expression promotes NF-κB activation in monocytes from primary Sjögren's syndrome patients. Pathology 44: 557–561.

    Google Scholar 

  17. Khandaker, M.H., G. Mitchell, L. Xu, J.D. Andrews, R. Singh, H. Leung, J. Madrenas, S.S. Ferguson, R.D. Feldman, and D.J. Kelvin. 1999. Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-alpha-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93: 2173–2185.

    PubMed  CAS  Google Scholar 

  18. Saftig, P., and K. Reis. 2011. The "a disintegrin and metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential? European Journal of Cell Biology 90: 527–535.

    Article  PubMed  CAS  Google Scholar 

  19. Vitali, C. 2003. Classification criteria for Sjögren's syndrome. Annals of the Rheumatic Diseases 2003(62): 94–95.

    Article  Google Scholar 

  20. Sens, D.A., D.S. Hintz, M.T. Rudisill, M.A. Sens, and S.S. Spicer. 1985. Explant culture of human submandibular gland epithelial cells: evidence for ductal origin. Laboratory Investigation 52: 559–567.

    PubMed  CAS  Google Scholar 

  21. Kapsogeorgou, E.K., H.M. Moutsopoulos, and M.N. Manoussakis. 2001. Functional expression of a costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that interacts with the CD28 receptor, but has reduced binding to CTLA4. Journal of Immunology 166: 3107–3113.

    CAS  Google Scholar 

  22. Von Andrian, U.H., and C.R. Mackay. 2000. T-cell function and migration. Two sides of the same coin. The New England Journal of Medicine 343: 1020–1034.

    Article  Google Scholar 

  23. Le, Y.Y., Zhou, P.I., and J.M. Wang. 2004. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cellular & Molecular Immunology 1: 95–104.

    CAS  Google Scholar 

  24. Parks, W.C., C.L. Wilson, and Y.S. Lopez-Boado. 2004. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Review Immunology 4: 617–629.

    Article  CAS  Google Scholar 

  25. Filipovic, R., I. Jakovcevski, and N. Zecevic. 2003. GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions. Developmental Neuroscience 25: 279–290.

    Article  PubMed  CAS  Google Scholar 

  26. Breland, U.M., B. Halvorsen, J. Hol, E. Øie, G. Paulsson-Berne, A. Yndestad, C. Smith, K. Otterdal, U. Hedin, T. Waehre, W.J. Sandberg, S.S. Frøland, G. Haraldsen, L. Gullestad, J.K. Damås, G.K. Hansson, and P. Aukrust. 2008. A potential role of the CXC chemokine GROalpha in atherosclerosis and plaque destabilization: downregulatory effects of statins. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  27. Dogan, R.N., and W.J. Karpus. 2004. Chemokines and chemokine receptors in autoimmune encephalomyelitis as a model for central nervous system inflammatory disease regulation. Frontiers in Bioscience 9: 1500–1505.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to M.V.C. Pragnell, B.A., a professional scientific text editor, for critical reading of the manuscript and language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Lisi.

Additional information

Sabrina Lisi and have Margherita Sisto have equal contribution in this work and both are equally considered as “first author”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisi, S., Sisto, M., Lofrumento, D.D. et al. GRO-α/CXCR2 System and ADAM17 Correlated Expression in Sjögren’s Syndrome. Inflammation 36, 759–766 (2013). https://doi.org/10.1007/s10753-013-9602-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9602-6

KEY WORDS

Navigation