Skip to main content
Log in

Activation of RhoA in Alcohol-Induced Intestinal Barrier Dysfunction

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Ras homolog gene family, member A (RhoA) is a small GTPase protein known to regulate multiple cellular processes. In the present study, we used both an alcohol-fed mouse model and an alcohol-treated Caco-2 intestinal epithelial cell monolayer in vitro model to investigate whether RhoA is involved in alcohol-induced intestinal barrier dysfunction as well as the underlying mechanisms. We found that chronic alcohol exposure significantly increased both intestinal RhoA mRNA and protein levels in mice and alcohol treatment also increased RhoA activity in Caco-2 cells. The alcohol-induced elevation in RhoA activity was accompanied by an increase in inducible nitric oxide synthase (iNOS) expression and prevented by N 6-(1-iminoethyl)-l-lysine dihydrochloride (l-NIL) or small interfering RNA (siRNA) specific for iNOS. Furthermore, alcohol treatment with Caco-2 cells resulted in a significant decrease in the epithelial transepithelial electrical resistance (TEER) value, which was attenuated by knockdown of RhoA. Taken together, our findings suggest that iNOS-mediated activation of RhoA appears to be one of the important mechanisms contributing to the deleterious effects of alcohol on intestinal barrier function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shaheen, N.J., R.A. Hansen, D.R. Morgan, L.M. Gangarosa, Y. Ringel, M.T. Thiny, M.W. Russo, and R.S. Sandler. 2006. The burden of gastrointestinal and liver diseases, 2006. American Journal of Gastroenterology 101(9): 2128–2138. doi:10.1111/j.1572-0241.2006.00723.x.

    Article  PubMed  Google Scholar 

  2. Rehm, J., C. Mathers, S. Popova, M. Thavorncharoensap, Y. Teerawattananon, and J. Patra. 2009. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373(9682): 2223–2233. doi:10.1016/S0140-6736(09)60746-7.

    Article  PubMed  Google Scholar 

  3. Purohit, V., B. Gao, and B.J. Song. 2009. Molecular mechanisms of alcoholic fatty liver. Alcoholism, Clinical and Experimental Research 33(2): 191–205. doi:10.1111/j.1530-0277.2008.00827.x.

    Article  PubMed  CAS  Google Scholar 

  4. Frazier, T.H., A.M. Stocker, N.A. Kershner, L.S. Marsano, and C.J. McClain. 2011. Treatment of alcoholic liver disease. Therapeutic Advances in Gastroenterology 4(1): 63–81. doi:10.1177/1756283X10378925.

    Article  PubMed  Google Scholar 

  5. Keshavarzian, A., E.W. Holmes, M. Patel, F. Iber, J.Z. Fields, and S. Pethkar. 1999. Leaky gut in alcoholic cirrhosis: A possible mechanism for alcohol-induced liver damage. American Journal of Gastroenterology 94(1): 200–207. doi:10.1111/j.1572-0241.1999.00797.x.

    Article  PubMed  CAS  Google Scholar 

  6. Parlesak, A., C. Schafer, T. Schutz, J.C. Bode, and C. Bode. 2000. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. Journal of Hepatology 32(5): 742–747.

    Article  PubMed  CAS  Google Scholar 

  7. Mackay, D.J., and A. Hall. 1998. Rho GTPases. Journal of Biological Chemistry 273(33): 20685–20688.

    Article  PubMed  CAS  Google Scholar 

  8. Bar-Sagi, D., and A. Hall. 2000. Ras and Rho GTPases: A family reunion. Cell 103(2): 227–238.

    Article  PubMed  CAS  Google Scholar 

  9. Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature 420(6916): 629–635. doi:10.1038/nature01148.

    Article  PubMed  CAS  Google Scholar 

  10. Hopkins, A.M., S.V. Walsh, P. Verkade, P. Boquet, and A. Nusrat. 2003. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. Journal of Cell Science 116(Pt 4): 725–742.

    Article  PubMed  CAS  Google Scholar 

  11. Bruewer, M., A.M. Hopkins, M.E. Hobert, A. Nusrat, and J.L. Madara. 2004. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. American Journal of Physiology. Cell Physiology 287(2): C327–C335. doi:10.1152/ajpcell.00087.2004.

    Article  PubMed  CAS  Google Scholar 

  12. Shen, L., and J.R. Turner. 2006. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: Tight junction dynamics exposed. American Journal of Physiology. Gastrointestinal and Liver Physiology 290(4): G577–G582. doi:10.1152/ajpgi.00439.2005.

    Article  PubMed  CAS  Google Scholar 

  13. Schlegel, N., M. Meir, V. Spindler, C.T. Germer, and J. Waschke. 2011. Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro. Journal of Cellular Physiology 226(5): 1196–1203. doi:10.1002/jcp.22446.

    Article  PubMed  CAS  Google Scholar 

  14. Iwata, T., F. Nozu, and M. Imawari. 2011. Ethanol impairs the assembly and disassembly of actin cytoskeleton and cell adhesion via the RhoA signaling pathway, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini. Biochemical and Biophysical Research Communications 405(4): 558–563. doi:10.1016/j.bbrc.2011.01.067.

    Article  PubMed  CAS  Google Scholar 

  15. Bailey, K.L., J.E. Robinson, J.H. Sisson, and T.A. Wyatt. 2011. Alcohol decreases RhoA activity through a nitric oxide (NO)/cyclic GMP(cGMP)/protein kinase G (PKG)-dependent pathway in the airway epithelium. Alcoholism, Clinical and Experimental Research 35(7): 1277–1281. doi:10.1111/j.1530-0277.2011.01463.x.

    Article  PubMed  Google Scholar 

  16. Selva, J., and G. Egea. 2011. Ethanol increases p190RhoGAP activity, leading to actin cytoskeleton rearrangements. Journal of Neurochemistry 119(6): 1306–1316. doi:10.1111/j.1471-4159.2011.07522.x.

    Article  PubMed  CAS  Google Scholar 

  17. Zhong, W., C.J. McClain, M. Cave, Y.J. Kang, and Z. Zhou. 2010. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. American Journal of Physiology. Gastrointestinal and Liver Physiology 298(5): G625–G633. doi:10.1152/ajpgi.00350.2009.

    Article  PubMed  CAS  Google Scholar 

  18. Zhong, W., Y. Zhao, C.J. McClain, Y.J. Kang, and Z. Zhou. 2010. Inactivation of hepatocyte nuclear factor-4{alpha} mediates alcohol-induced downregulation of intestinal tight junction proteins. American Journal of Physiology. Gastrointestinal and Liver Physiology 299(3): G643–G651. doi:10.1152/ajpgi.00515.2009.

    Article  PubMed  CAS  Google Scholar 

  19. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4): 402–408. doi:10.1006/meth.2001.1262.

    Article  PubMed  CAS  Google Scholar 

  20. Romero, A.M., G. Esteban-Pretel, M.P. Marin, X. Ponsoda, R. Ballestin, J.J. Canales, and J. Renau-Piqueras. 2010. Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in primary culture. Toxicological Sciences 118(2): 602–612. doi:10.1093/toxsci/kfq260.

    Article  PubMed  CAS  Google Scholar 

  21. Lindsley, T.A., S.N. Shah, and E.A. Ruggiero. 2011. Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcoholism, Clinical and Experimental Research 35(7): 1321–1330. doi:10.1111/j.1530-0277.2011.01468.x.

    Article  PubMed  CAS  Google Scholar 

  22. Schaffert, C.S., S.L. Todero, C.A. Casey, G.M. Thiele, M.F. Sorrell, and D.J. Tuma. 2006. Chronic ethanol treatment impairs Rac and Cdc42 activation in rat hepatocytes. Alcoholism, Clinical and Experimental Research 30(7): 1208–1213. doi:10.1111/j.1530-0277.2006.00135.x.

    Article  PubMed  CAS  Google Scholar 

  23. Forsyth, C.B., Y. Tang, M. Shaikh, L. Zhang, and A. Keshavarzian. 2011. Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcoholism, Clinical and Experimental Research 35(9): 1635–1643. doi:10.1111/j.1530-0277.2011.01510.x.

    PubMed  CAS  Google Scholar 

  24. Tang, Y., C.B. Forsyth, A. Farhadi, J. Rangan, S. Jakate, M. Shaikh, A. Banan, J.Z. Fields, and A. Keshavarzian. 2009. Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcoholism, Clinical and Experimental Research 33(7): 1220–1230. doi:10.1111/j.1530-0277.2009.00946.x.

    Article  PubMed  CAS  Google Scholar 

  25. Soliman, H., G.P. Craig, P. Nagareddy, V.G. Yuen, G. Lin, U. Kumar, J.H. McNeill, and K.M. Macleod. 2008. Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats. Cardiovascular Research 79(2): 322–330. doi:10.1093/cvr/cvn095.

    Article  PubMed  CAS  Google Scholar 

  26. Li, D.B., Z.X. Fu, S.Q. Ruan, S.J. Hu, and X. Li. 2012. Acetylsalicylic acid regulates overexpressed small GTPase RhoA in vascular smooth muscle cells through prevention of new synthesis and enhancement of protein degradation. Bioscience Reports 32(2): 153–160. doi:10.1042/BSR20110050.

    Article  PubMed  Google Scholar 

  27. Soliman, H., A. Gador, Y.H. Lu, G. Lin, G. Bankar, and K.M. Macleod. 2012. Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho kinase and PKCbeta2. American Journal of Physiology. Heart and Circulatory Physiology 303(8): H989–H1000. doi:10.1152/ajpheart.00416.2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, J., Wang, Y., Chang, B. et al. Activation of RhoA in Alcohol-Induced Intestinal Barrier Dysfunction. Inflammation 36, 750–758 (2013). https://doi.org/10.1007/s10753-013-9601-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9601-7

KEY WORDS

Navigation