Advertisement

Inflammation

, Volume 36, Issue 3, pp 633–642 | Cite as

Is the CCR5 Δ 32 Mutation Associated with Immune System-Related Diseases?

  • Khodayar Ghorban
  • Maryam Dadmanesh
  • Gholamhossein Hassanshahi
  • Mohammad Momeni
  • Mohammad Zare-Bidaki
  • Mohammad Kazemi Arababadi
  • Derek Kennedy
Article

Abstract

Hypersensitivity and autoimmunity are the main features of immune system-related diseases such as type 2 diabetes (T2D), multiple sclerosis (MS), and asthma. It has been established that chemokines play key roles in the activation and regulation of immune cell migration which is important in the pathogenesis of the diseases mentioned. CC chemokines receptor 5 or CCR5 is a receptor for RANTES, MIP-1α, and MIP-1β and is expressed by several immune cells including NK cells, T lymphocytes, and macrophages. It plays key roles in the regulation of migration and activation of the immune cells during immune responses against microbe and self-antigens during autoimmunity and hypersensitivity disorders. Therefore, any alteration in the sequence of CCR5 gene or in its expression could be associated with immune system-related diseases. Previous studies revealed that a 32-base pair deletion (Δ 32) in exon 1 of the CCR5 gene led to downregulation of the gene. Previous studies demonstrated that not only CCR5 expression was altered in autoimmune and hypersensitivity disorders, but also that the mutation is associated with the diseases. This review addresses the recent information regarding the association of the CCR5 Δ 32 mutation in immune-related diseases including T2D with and without nephropathy, MS, and asthma. Based on the collected data, it seems that the CCR5 Δ 32 mutation can be considered as a risk factor for MS, but not asthma and T2D with and without nephropathy.

KEY WORDS

CCR5 Δ 32 mutation type 2 diabetes nephropathy multiple sclerosis asthma 

Notes

Acknowledgments

This project was supported by a grant from the Rafsanjan University of Medical Sciences.

References

  1. 1.
    Chiang, Y.J., H.K. Kole, K. Brown, et al. 2000. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403: 216–220.PubMedCrossRefGoogle Scholar
  2. 2.
    Arababadi M. K., Ahmadabadi B. N., Kennedy D. 2012. Current information on the immunological status of occult hepatitis B infection. Transfusion 52: 1819–1826.Google Scholar
  3. 3.
    van Eden, W., A. Koets, P. van Kooten, et al. 2003. Immunopotentiating heat shock proteins: negotiators between innate danger and control of autoimmunity. Vaccine 21: 897–901.PubMedCrossRefGoogle Scholar
  4. 4.
    Miyara, M., K. Wing, and S. Sakaguchi. 2009. Therapeutic approaches to allergy and autoimmunity based on FoxP3+ regulatory T-cell activation and expansion. J Allergy Clin Immunol 123: 749–755. quiz 756–747.PubMedCrossRefGoogle Scholar
  5. 5.
    Al-Abdulhadi, S.A., and M.W. Al-Rabia. 2010. Linkage and haplotype analysis for chemokine receptors clustered on chromosome 3p21.3 and transmitted in family pedigrees with asthma and atopy. Ann Saudi Med 30: 115–122.PubMedCrossRefGoogle Scholar
  6. 6.
    Lehner, T. 2002. The role of CCR5 chemokine ligands and antibodies to CCR5 coreceptors in preventing HIV infection. Trends Immunol 23: 347–351.PubMedCrossRefGoogle Scholar
  7. 7.
    Ahmadabadi, B.N., G. Hassanshahi, H. Khoramdelazad, et al. 2012. Down-regulation of CCR5 expression on the peripheral blood CD8+ T cells of South-Eastern Iranian patients with chronic hepatitis B infection. Inflammation. doi: 10.1007/s10753-012-9528-4.
  8. 8.
    Song, J.K., M.H. Park, D.Y. Choi, et al. 2012. Deficiency of C-C chemokine receptor 5 suppresses tumor development via inactivation of NF-kappaB and upregulation of IL-1Ra in melanoma model. PLoS One 7: e33747.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuipers, H.F., P.J. Biesta, L.J. Montagne, et al. 2008. CC chemokine receptor 5 gene promoter activation by the cyclic AMP response element binding transcription factor. Blood 112: 1610–1619.PubMedCrossRefGoogle Scholar
  10. 10.
    Blanpain, C., F. Libert, G. Vassart, et al. 2002. CCR5 and HIV infection. Receptors Channels 8: 19–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Sorce, S., R. Myburgh, and K.H. Krause. 2011. The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol 93: 297–311.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong, M., S. Uddin, B. Majchrzak, et al. 2001. Rantes activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells. J Biol Chem 276: 11427–11431.PubMedCrossRefGoogle Scholar
  13. 13.
    Arababadi, M.K., A.A. Pourfathollah, A. Jafarzadeh, et al. 2010. Decreased expression of CCR5 on the NK cells in occult HBV infected patients. LabMedicine 41: 735–738.Google Scholar
  14. 14.
    Jin, Q., L. Agrawal, L. Meyer, et al. 2008. CCR5Delta32 59537-G/A promoter polymorphism is associated with low translational efficiency and the loss of CCR5Delta32 protective effects. J Virol 82: 2418–2426.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh, H., R. Sachan, M. Jain, et al. 2008. CCR5-Delta32 polymorphism and susceptibility to cervical cancer: association with early stage of cervical cancer. Oncol Res 17: 87–91.PubMedGoogle Scholar
  16. 16.
    Nahon, P., A. Sutton, P. Rufat, et al. 2008. Chemokine system polymorphisms, survival and hepatocellular carcinoma occurrence in patients with hepatitis C virus-related cirrhosis. World J Gastroenterol 14: 713–719.PubMedCrossRefGoogle Scholar
  17. 17.
    Guerini, F.R., S. Delbue, M. Zanzottera, et al. 2008. Analysis of CCR5, CCR2, SDF1 and RANTES gene polymorphisms in subjects with HIV-related PML and not determined leukoencephalopathy. Biomed Pharmacother 62: 26–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Abousaidi, H., R. Vazirinejad, M.K. Arababadi, et al. 2011. Lack of association between chemokine receptor 5 (CCR5) delta32 mutation and pathogenesis of asthma in Iranian patients. South Med J 104: 422–425.PubMedCrossRefGoogle Scholar
  19. 19.
    Richardson, M.W., J. Jadlowsky, C.A. Didigu, et al. 2012. Kruppel-like factor 2 modulates CCR5 expression and susceptibility to HIV-1 infection. J Immunol 189: 3815–3821.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, S., C. Kong, J. Wu, et al. 2012. Effect of CCR5-Delta32 heterozygosity on HIV-1 susceptibility: a meta-analysis. PLoS One 7: e35020.PubMedCrossRefGoogle Scholar
  21. 21.
    Muntinghe, F.L., S. Gross, S.J. Bakker, et al. 2009. CCR5Delta32 genotype is associated with outcome in type 2 diabetes mellitus. Diabetes Res Clin Pract 86: 140–145.PubMedCrossRefGoogle Scholar
  22. 22.
    Sellebjerg, F., H.O. Madsen, C.V. Jensen, et al. 2000. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 102: 98–106.PubMedCrossRefGoogle Scholar
  23. 23.
    Bisset, L.R., and P. Schmid-Grendelmeier. 2005. Chemokines and their receptors in the pathogenesis of allergic asthma: progress and perspective. Curr Opin Pulm Med 11: 35–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Cookson, W. 1999. The alliance of genes and environment in asthma and allergy. Nature 402: B5–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Orihara, K., N. Dil, V. Anaparti, et al. 2011. What's new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 4: 605–629.CrossRefGoogle Scholar
  26. 26.
    Sawcer, S., G. Hellenthal, M. Pirinen, et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–219.PubMedCrossRefGoogle Scholar
  27. 27.
    Arababadi, M.K., R. Mosavi, H. Khorramdelazad, et al. 2010. Cytokine patterns after therapy with Avonex(R), Rebif(R), Betaferon(R) and CinnoVex in relapsing-remitting multiple sclerosis in Iranian patients. Biomark Med 4: 755–759.PubMedCrossRefGoogle Scholar
  28. 28.
    Arababadi M. K., Mosavi R., Teimori H., et al. 2011. Association of IL-4 polymorphisms with multiple sclerosis in south-eastern Iranian patients. Ann Saudi Med 32: 127–130.Google Scholar
  29. 29.
    Yaghini N., Mahmoodi M., Asadikaram G., et al. 2012. Genetic variation of IL-12B (+1188 region) is associated with its decreased circulating levels and susceptibility to type 2 diabetes: a study on south-eastern Iranian diabetic patients. Biomark Med 6: 89–95.Google Scholar
  30. 30.
    Cruz, M., C. Maldonado-Bernal, R. Mondragon-Gonzalez, et al. 2008. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes. J Endocrinol Invest 31: 694–699.PubMedGoogle Scholar
  31. 31.
    Yaghini N., Mahmoodi M., Asadikaram G., et al. 2011. Serum levels of Interleukin 10 (IL-10) in patients with type 2 diabetes. Iran Red Cres Med J 13: 752.Google Scholar
  32. 32.
    Arababadi, M.K., R. Nosratabadi, G. Hassanshahi, et al. 2009. Nephropathic complication of type-2 diabetes is following pattern of autoimmune diseases? Diabetes Res Clin Pract 87: 33–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Arababadi, M.K. 2010. Interleukin-4 gene polymorphisms in type 2 diabetic patients with nephropathy. Iran J Kidney Dis 4: 302–306.Google Scholar
  34. 34.
    Arababadi, M.K., A.A. Pourfathollah, S. Daneshmandi, et al. 2009. Evaluation of relation between IL-4 and IFN-g polymorphisms and type 2 diabetes. Iran J Bas Med Sci 12: 100–104.Google Scholar
  35. 35.
    Nosratabadi, R., M.K. Arababadi, V.A. Salehabad, et al. 2010. Polymorphisms within exon 9 but not intron 8 of the vitamin D receptor are associated with the nephropathic complication of type-2 diabetes. Int J Immunogenet 37: 1–5.CrossRefGoogle Scholar
  36. 36.
    Arababadi, M.K., N. Naghavi, G. Hassanshahi, et al. 2009. Is CCR5-Delta32 mutation associated with diabetic nephropathy in type 2 diabetes? Ann Saudi Med 29: 413.PubMedCrossRefGoogle Scholar
  37. 37.
    Neumeier, M., S. Bauer, H. Bruhl, et al. 2011. Adiponectin stimulates release of CCL2, -3, -4 and -5 while the surface abundance of CCR2 and -5 is simultaneously reduced in primary human monocytes. Cytokine 56: 573–580.PubMedCrossRefGoogle Scholar
  38. 38.
    Venza, I., M. Visalli, M. Cucinotta, et al. 2010. Proinflammatory gene expression at chronic periodontitis and peri-implantitis sites in patients with or without type 2 diabetes. J Periodontol 81: 99–108.PubMedCrossRefGoogle Scholar
  39. 39.
    Bogdanski, P., D. Pupek-Musialik, J. Dytfeld, et al. 2007. Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 45: 563–567.PubMedGoogle Scholar
  40. 40.
    Kalev, I., K. Oselin, P. Parlist, et al. 2003. CC-chemokine receptor CCR5-del32 mutation as a modifying pathogenetic factor in type I diabetes. J Diabetes Complications 17: 387–391.PubMedCrossRefGoogle Scholar
  41. 41.
    Ahluwalia, T.S., M. Khullar, M. Ahuja, et al. 2009. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One 4: e5168.PubMedCrossRefGoogle Scholar
  42. 42.
    Ascherio, A., K.L. Munger, and K.C. Simon. 2010. Vitamin D and multiple sclerosis. Lancet Neurol 9: 599–612.PubMedCrossRefGoogle Scholar
  43. 43.
    Teunissen, C.E., J. Killestein, and G. Giovannoni. 2007. Biomarker research in multiple sclerosis: addressing axonal damage and heterogeneity. Biomark Med 1: 111–119.PubMedCrossRefGoogle Scholar
  44. 44.
    Glass, C.K., K. Saijo, B. Winner, et al. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934.PubMedCrossRefGoogle Scholar
  45. 45.
    Gandhi, R., A. Laroni, and H.L. Weiner. 2010. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 221: 7–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Szczucinski, A., and J. Losy. 2007. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115: 137–146.PubMedCrossRefGoogle Scholar
  47. 47.
    Arababadi, M.K., G. Hassanshahi, H. Azin, et al. 2010. No association between CCR5-Δ 32 mutation and multiple sclerosis in patients of south-eastern of Iran. LabMedicine 41: 31–33.Google Scholar
  48. 48.
    Bennetts, B.H., S.M. Teutsch, M.M. Buhler, et al. 1997. The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum Immunol 58: 52–59.PubMedCrossRefGoogle Scholar
  49. 49.
    Kantarci, O.H., Y. Morales, P.A. Ziemer, et al. 2005. CCR5Delta32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. J Neuroimmunol 169: 137–143.PubMedCrossRefGoogle Scholar
  50. 50.
    Silversides, J.A., S.V. Heggarty, G.V. McDonnell, et al. 2004. Influence of CCR5 delta32 polymorphism on multiple sclerosis susceptibility and disease course. Mult Scler 10: 149–152.PubMedCrossRefGoogle Scholar
  51. 51.
    Haase, C.G., S. Schmidt, and P.M. Faustmann. 2002. Frequencies of the G-protein beta3 subunit C825T polymorphism and the delta 32 mutation of the chemokine receptor-5 in patients with multiple sclerosis. Neurosci Lett 330: 293–295.PubMedCrossRefGoogle Scholar
  52. 52.
    Sellebjerg, F., T.B. Kristiansen, P. Wittenhagen, et al. 2007. Chemokine receptor CCR5 in interferon-treated multiple sclerosis. Acta Neurol Scand 115: 413–418.PubMedCrossRefGoogle Scholar
  53. 53.
    Sellebjerg, F., G. Giovannoni, A. Hand, et al. 2002. Cerebrospinal fluid levels of nitric oxide metabolites predict response to methylprednisolone treatment in multiple sclerosis and optic neuritis. J Neuroimmunol 125: 198–203.PubMedCrossRefGoogle Scholar
  54. 54.
    Shahbazi, M., H. Ebadi, D. Fathi, et al. 2009. CCR5-delta32 allele is associated with the risk of developing multiple sclerosis in the Iranian population. Cell Mol Neurobiol 29: 29.CrossRefGoogle Scholar
  55. 55.
    Gade-Andavolu, R., D.E. Comings, J. MacMurray, et al. 2004. Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med 6: 126–131.PubMedCrossRefGoogle Scholar
  56. 56.
    Favorova, O.O., T.V. Andreewski, A.N. Boiko, et al. 2002. The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians. Neurology 59: 1652–1655.PubMedCrossRefGoogle Scholar
  57. 57.
    D'Angelo, R., C. Crisafulli, C. Rinaldi, et al. 2011. CCR5Delta32 polymorphism associated with a slower rate disease progression in a cohort of RR-MS Sicilian patients. Mult Scler Int 2011: 153282.PubMedGoogle Scholar
  58. 58.
    Pulkkinen, K., M. Luomala, H. Kuusisto, et al. 2004. Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis. Acta Neurol Scand 109: 342–347.PubMedCrossRefGoogle Scholar
  59. 59.
    Sandford, A.J., S. Zhu, T.R. Bai, et al. 2001. The role of the C-C chemokine receptor-5 Delta32 polymorphism in asthma and in the production of regulated on activation, normal T cells expressed and secreted. J Allergy Clin Immunol 108: 69–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Zietkowski, Z., M.M. Tomasiak, R. Skiepko, et al. 2008. RANTES in exhaled breath condensate of stable and unstable asthma patients. Respir Med 102: 1198–1202.PubMedCrossRefGoogle Scholar
  61. 61.
    Moore, K.W., R. de Waal Malefyt, R.L. Coffman, et al. 2001. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765.PubMedCrossRefGoogle Scholar
  62. 62.
    Abousaidi H., Vazirinejad R., Arababadi M. K., et al. 2011. Lack of association between chemokine receptor 5 (CCR5) C32 mutation and pathogenesis of Asthma: A Study on Iranian Asthma Patients. South Med J 104: 422–425.Google Scholar
  63. 63.
    Mitchell, T.J., A.J. Walley, J.E. Pease, et al. 2000. Delta 32 deletion of CCR5 gene and association with asthma or atopy. Lancet 356: 1491–1492.PubMedCrossRefGoogle Scholar
  64. 64.
    Szalai, C., A. Bojszko, G. Beko, et al. 2000. Prevalence of CCR5delta32 in allergic diseases. Lancet 355: 66.PubMedCrossRefGoogle Scholar
  65. 65.
    Nagy, A., G.T. Kozma, A. Bojszko, et al. 2002. No association between asthma or allergy and the CCR5Delta 32 mutation. Arch Dis Child 86: 426.PubMedCrossRefGoogle Scholar
  66. 66.
    McGinnis, R., F. Child, S. Clayton, et al. 2002. Further support for the association of CCR5 allelic variants with asthma susceptibility. Eur J Immunogenet 29: 525–528.PubMedCrossRefGoogle Scholar
  67. 67.
    Srivastava, P., P.J. Helms, D. Stewart, et al. 2003. Association of CCR5Delta32 with reduced risk of childhood but not adult asthma. Thorax 58: 222–226.PubMedCrossRefGoogle Scholar
  68. 68.
    Hall, I.P., A. Wheatley, G. Christie, et al. 1999. Association of CCR5 delta32 with reduced risk of asthma. Lancet 354: 1264–1265.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Khodayar Ghorban
    • 1
  • Maryam Dadmanesh
    • 2
  • Gholamhossein Hassanshahi
    • 3
  • Mohammad Momeni
    • 4
  • Mohammad Zare-Bidaki
    • 5
  • Mohammad Kazemi Arababadi
    • 5
  • Derek Kennedy
    • 6
  1. 1.Department of Immunology, Faculty of MedicineAJA University of Medical SciencesTehranIran
  2. 2.Department of Infectious Diseases, Faculty of MedicineAJA university of Medical SciencesTehranIran
  3. 3.Molecular Medicine Research CenterRafsanjan University of Medical SciencesRafsanjanIran
  4. 4.Department of Microbiology, Hematology and Immunology, Faculty of MedicineRafsanjan University of Medical SciencesRafsanjanIran
  5. 5.Immunology of Infectious Diseases Research CenterRafsanjan University of Medical SciencesRafsanjanIran
  6. 6.School of Biomolecular and Physical Science, Eskitis Institute for Cell and Molecular TherapiesGriffith University NathanQueenslandAustralia

Personalised recommendations