Skip to main content
Log in

Is the CCR5 Δ 32 Mutation Associated with Immune System-Related Diseases?

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hypersensitivity and autoimmunity are the main features of immune system-related diseases such as type 2 diabetes (T2D), multiple sclerosis (MS), and asthma. It has been established that chemokines play key roles in the activation and regulation of immune cell migration which is important in the pathogenesis of the diseases mentioned. CC chemokines receptor 5 or CCR5 is a receptor for RANTES, MIP-1α, and MIP-1β and is expressed by several immune cells including NK cells, T lymphocytes, and macrophages. It plays key roles in the regulation of migration and activation of the immune cells during immune responses against microbe and self-antigens during autoimmunity and hypersensitivity disorders. Therefore, any alteration in the sequence of CCR5 gene or in its expression could be associated with immune system-related diseases. Previous studies revealed that a 32-base pair deletion (Δ 32) in exon 1 of the CCR5 gene led to downregulation of the gene. Previous studies demonstrated that not only CCR5 expression was altered in autoimmune and hypersensitivity disorders, but also that the mutation is associated with the diseases. This review addresses the recent information regarding the association of the CCR5 Δ 32 mutation in immune-related diseases including T2D with and without nephropathy, MS, and asthma. Based on the collected data, it seems that the CCR5 Δ 32 mutation can be considered as a risk factor for MS, but not asthma and T2D with and without nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Chiang, Y.J., H.K. Kole, K. Brown, et al. 2000. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403: 216–220.

    Article  PubMed  CAS  Google Scholar 

  2. Arababadi M. K., Ahmadabadi B. N., Kennedy D. 2012. Current information on the immunological status of occult hepatitis B infection. Transfusion 52: 1819–1826.

    Google Scholar 

  3. van Eden, W., A. Koets, P. van Kooten, et al. 2003. Immunopotentiating heat shock proteins: negotiators between innate danger and control of autoimmunity. Vaccine 21: 897–901.

    Article  PubMed  Google Scholar 

  4. Miyara, M., K. Wing, and S. Sakaguchi. 2009. Therapeutic approaches to allergy and autoimmunity based on FoxP3+ regulatory T-cell activation and expansion. J Allergy Clin Immunol 123: 749–755. quiz 756–747.

    Article  PubMed  CAS  Google Scholar 

  5. Al-Abdulhadi, S.A., and M.W. Al-Rabia. 2010. Linkage and haplotype analysis for chemokine receptors clustered on chromosome 3p21.3 and transmitted in family pedigrees with asthma and atopy. Ann Saudi Med 30: 115–122.

    Article  PubMed  Google Scholar 

  6. Lehner, T. 2002. The role of CCR5 chemokine ligands and antibodies to CCR5 coreceptors in preventing HIV infection. Trends Immunol 23: 347–351.

    Article  PubMed  CAS  Google Scholar 

  7. Ahmadabadi, B.N., G. Hassanshahi, H. Khoramdelazad, et al. 2012. Down-regulation of CCR5 expression on the peripheral blood CD8+ T cells of South-Eastern Iranian patients with chronic hepatitis B infection. Inflammation. doi:10.1007/s10753-012-9528-4.

  8. Song, J.K., M.H. Park, D.Y. Choi, et al. 2012. Deficiency of C-C chemokine receptor 5 suppresses tumor development via inactivation of NF-kappaB and upregulation of IL-1Ra in melanoma model. PLoS One 7: e33747.

    Article  PubMed  CAS  Google Scholar 

  9. Kuipers, H.F., P.J. Biesta, L.J. Montagne, et al. 2008. CC chemokine receptor 5 gene promoter activation by the cyclic AMP response element binding transcription factor. Blood 112: 1610–1619.

    Article  PubMed  CAS  Google Scholar 

  10. Blanpain, C., F. Libert, G. Vassart, et al. 2002. CCR5 and HIV infection. Receptors Channels 8: 19–31.

    Article  PubMed  CAS  Google Scholar 

  11. Sorce, S., R. Myburgh, and K.H. Krause. 2011. The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol 93: 297–311.

    Article  PubMed  CAS  Google Scholar 

  12. Wong, M., S. Uddin, B. Majchrzak, et al. 2001. Rantes activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells. J Biol Chem 276: 11427–11431.

    Article  PubMed  CAS  Google Scholar 

  13. Arababadi, M.K., A.A. Pourfathollah, A. Jafarzadeh, et al. 2010. Decreased expression of CCR5 on the NK cells in occult HBV infected patients. LabMedicine 41: 735–738.

    Google Scholar 

  14. Jin, Q., L. Agrawal, L. Meyer, et al. 2008. CCR5Delta32 59537-G/A promoter polymorphism is associated with low translational efficiency and the loss of CCR5Delta32 protective effects. J Virol 82: 2418–2426.

    Article  PubMed  CAS  Google Scholar 

  15. Singh, H., R. Sachan, M. Jain, et al. 2008. CCR5-Delta32 polymorphism and susceptibility to cervical cancer: association with early stage of cervical cancer. Oncol Res 17: 87–91.

    PubMed  Google Scholar 

  16. Nahon, P., A. Sutton, P. Rufat, et al. 2008. Chemokine system polymorphisms, survival and hepatocellular carcinoma occurrence in patients with hepatitis C virus-related cirrhosis. World J Gastroenterol 14: 713–719.

    Article  PubMed  CAS  Google Scholar 

  17. Guerini, F.R., S. Delbue, M. Zanzottera, et al. 2008. Analysis of CCR5, CCR2, SDF1 and RANTES gene polymorphisms in subjects with HIV-related PML and not determined leukoencephalopathy. Biomed Pharmacother 62: 26–30.

    Article  PubMed  CAS  Google Scholar 

  18. Abousaidi, H., R. Vazirinejad, M.K. Arababadi, et al. 2011. Lack of association between chemokine receptor 5 (CCR5) delta32 mutation and pathogenesis of asthma in Iranian patients. South Med J 104: 422–425.

    Article  PubMed  Google Scholar 

  19. Richardson, M.W., J. Jadlowsky, C.A. Didigu, et al. 2012. Kruppel-like factor 2 modulates CCR5 expression and susceptibility to HIV-1 infection. J Immunol 189: 3815–3821.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, S., C. Kong, J. Wu, et al. 2012. Effect of CCR5-Delta32 heterozygosity on HIV-1 susceptibility: a meta-analysis. PLoS One 7: e35020.

    Article  PubMed  CAS  Google Scholar 

  21. Muntinghe, F.L., S. Gross, S.J. Bakker, et al. 2009. CCR5Delta32 genotype is associated with outcome in type 2 diabetes mellitus. Diabetes Res Clin Pract 86: 140–145.

    Article  PubMed  CAS  Google Scholar 

  22. Sellebjerg, F., H.O. Madsen, C.V. Jensen, et al. 2000. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 102: 98–106.

    Article  PubMed  CAS  Google Scholar 

  23. Bisset, L.R., and P. Schmid-Grendelmeier. 2005. Chemokines and their receptors in the pathogenesis of allergic asthma: progress and perspective. Curr Opin Pulm Med 11: 35–42.

    Article  PubMed  CAS  Google Scholar 

  24. Cookson, W. 1999. The alliance of genes and environment in asthma and allergy. Nature 402: B5–11.

    Article  PubMed  CAS  Google Scholar 

  25. Orihara, K., N. Dil, V. Anaparti, et al. 2011. What's new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 4: 605–629.

    Article  Google Scholar 

  26. Sawcer, S., G. Hellenthal, M. Pirinen, et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–219.

    Article  PubMed  CAS  Google Scholar 

  27. Arababadi, M.K., R. Mosavi, H. Khorramdelazad, et al. 2010. Cytokine patterns after therapy with Avonex(R), Rebif(R), Betaferon(R) and CinnoVex in relapsing-remitting multiple sclerosis in Iranian patients. Biomark Med 4: 755–759.

    Article  PubMed  CAS  Google Scholar 

  28. Arababadi M. K., Mosavi R., Teimori H., et al. 2011. Association of IL-4 polymorphisms with multiple sclerosis in south-eastern Iranian patients. Ann Saudi Med 32: 127–130.

    Google Scholar 

  29. Yaghini N., Mahmoodi M., Asadikaram G., et al. 2012. Genetic variation of IL-12B (+1188 region) is associated with its decreased circulating levels and susceptibility to type 2 diabetes: a study on south-eastern Iranian diabetic patients. Biomark Med 6: 89–95.

    Google Scholar 

  30. Cruz, M., C. Maldonado-Bernal, R. Mondragon-Gonzalez, et al. 2008. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes. J Endocrinol Invest 31: 694–699.

    PubMed  CAS  Google Scholar 

  31. Yaghini N., Mahmoodi M., Asadikaram G., et al. 2011. Serum levels of Interleukin 10 (IL-10) in patients with type 2 diabetes. Iran Red Cres Med J 13: 752.

    Google Scholar 

  32. Arababadi, M.K., R. Nosratabadi, G. Hassanshahi, et al. 2009. Nephropathic complication of type-2 diabetes is following pattern of autoimmune diseases? Diabetes Res Clin Pract 87: 33–37.

    Article  PubMed  Google Scholar 

  33. Arababadi, M.K. 2010. Interleukin-4 gene polymorphisms in type 2 diabetic patients with nephropathy. Iran J Kidney Dis 4: 302–306.

    Google Scholar 

  34. Arababadi, M.K., A.A. Pourfathollah, S. Daneshmandi, et al. 2009. Evaluation of relation between IL-4 and IFN-g polymorphisms and type 2 diabetes. Iran J Bas Med Sci 12: 100–104.

    CAS  Google Scholar 

  35. Nosratabadi, R., M.K. Arababadi, V.A. Salehabad, et al. 2010. Polymorphisms within exon 9 but not intron 8 of the vitamin D receptor are associated with the nephropathic complication of type-2 diabetes. Int J Immunogenet 37: 1–5.

    Article  Google Scholar 

  36. Arababadi, M.K., N. Naghavi, G. Hassanshahi, et al. 2009. Is CCR5-Delta32 mutation associated with diabetic nephropathy in type 2 diabetes? Ann Saudi Med 29: 413.

    Article  PubMed  Google Scholar 

  37. Neumeier, M., S. Bauer, H. Bruhl, et al. 2011. Adiponectin stimulates release of CCL2, -3, -4 and -5 while the surface abundance of CCR2 and -5 is simultaneously reduced in primary human monocytes. Cytokine 56: 573–580.

    Article  PubMed  CAS  Google Scholar 

  38. Venza, I., M. Visalli, M. Cucinotta, et al. 2010. Proinflammatory gene expression at chronic periodontitis and peri-implantitis sites in patients with or without type 2 diabetes. J Periodontol 81: 99–108.

    Article  PubMed  CAS  Google Scholar 

  39. Bogdanski, P., D. Pupek-Musialik, J. Dytfeld, et al. 2007. Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 45: 563–567.

    PubMed  CAS  Google Scholar 

  40. Kalev, I., K. Oselin, P. Parlist, et al. 2003. CC-chemokine receptor CCR5-del32 mutation as a modifying pathogenetic factor in type I diabetes. J Diabetes Complications 17: 387–391.

    Article  PubMed  Google Scholar 

  41. Ahluwalia, T.S., M. Khullar, M. Ahuja, et al. 2009. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One 4: e5168.

    Article  PubMed  Google Scholar 

  42. Ascherio, A., K.L. Munger, and K.C. Simon. 2010. Vitamin D and multiple sclerosis. Lancet Neurol 9: 599–612.

    Article  PubMed  Google Scholar 

  43. Teunissen, C.E., J. Killestein, and G. Giovannoni. 2007. Biomarker research in multiple sclerosis: addressing axonal damage and heterogeneity. Biomark Med 1: 111–119.

    Article  PubMed  CAS  Google Scholar 

  44. Glass, C.K., K. Saijo, B. Winner, et al. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934.

    Article  PubMed  CAS  Google Scholar 

  45. Gandhi, R., A. Laroni, and H.L. Weiner. 2010. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 221: 7–14.

    Article  PubMed  CAS  Google Scholar 

  46. Szczucinski, A., and J. Losy. 2007. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115: 137–146.

    Article  PubMed  CAS  Google Scholar 

  47. Arababadi, M.K., G. Hassanshahi, H. Azin, et al. 2010. No association between CCR5-Δ 32 mutation and multiple sclerosis in patients of south-eastern of Iran. LabMedicine 41: 31–33.

    Google Scholar 

  48. Bennetts, B.H., S.M. Teutsch, M.M. Buhler, et al. 1997. The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum Immunol 58: 52–59.

    Article  PubMed  CAS  Google Scholar 

  49. Kantarci, O.H., Y. Morales, P.A. Ziemer, et al. 2005. CCR5Delta32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. J Neuroimmunol 169: 137–143.

    Article  PubMed  CAS  Google Scholar 

  50. Silversides, J.A., S.V. Heggarty, G.V. McDonnell, et al. 2004. Influence of CCR5 delta32 polymorphism on multiple sclerosis susceptibility and disease course. Mult Scler 10: 149–152.

    Article  PubMed  CAS  Google Scholar 

  51. Haase, C.G., S. Schmidt, and P.M. Faustmann. 2002. Frequencies of the G-protein beta3 subunit C825T polymorphism and the delta 32 mutation of the chemokine receptor-5 in patients with multiple sclerosis. Neurosci Lett 330: 293–295.

    Article  PubMed  CAS  Google Scholar 

  52. Sellebjerg, F., T.B. Kristiansen, P. Wittenhagen, et al. 2007. Chemokine receptor CCR5 in interferon-treated multiple sclerosis. Acta Neurol Scand 115: 413–418.

    Article  PubMed  CAS  Google Scholar 

  53. Sellebjerg, F., G. Giovannoni, A. Hand, et al. 2002. Cerebrospinal fluid levels of nitric oxide metabolites predict response to methylprednisolone treatment in multiple sclerosis and optic neuritis. J Neuroimmunol 125: 198–203.

    Article  PubMed  CAS  Google Scholar 

  54. Shahbazi, M., H. Ebadi, D. Fathi, et al. 2009. CCR5-delta32 allele is associated with the risk of developing multiple sclerosis in the Iranian population. Cell Mol Neurobiol 29: 29.

    Article  Google Scholar 

  55. Gade-Andavolu, R., D.E. Comings, J. MacMurray, et al. 2004. Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med 6: 126–131.

    Article  PubMed  CAS  Google Scholar 

  56. Favorova, O.O., T.V. Andreewski, A.N. Boiko, et al. 2002. The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians. Neurology 59: 1652–1655.

    Article  PubMed  CAS  Google Scholar 

  57. D'Angelo, R., C. Crisafulli, C. Rinaldi, et al. 2011. CCR5Delta32 polymorphism associated with a slower rate disease progression in a cohort of RR-MS Sicilian patients. Mult Scler Int 2011: 153282.

    PubMed  Google Scholar 

  58. Pulkkinen, K., M. Luomala, H. Kuusisto, et al. 2004. Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis. Acta Neurol Scand 109: 342–347.

    Article  PubMed  CAS  Google Scholar 

  59. Sandford, A.J., S. Zhu, T.R. Bai, et al. 2001. The role of the C-C chemokine receptor-5 Delta32 polymorphism in asthma and in the production of regulated on activation, normal T cells expressed and secreted. J Allergy Clin Immunol 108: 69–73.

    Article  PubMed  CAS  Google Scholar 

  60. Zietkowski, Z., M.M. Tomasiak, R. Skiepko, et al. 2008. RANTES in exhaled breath condensate of stable and unstable asthma patients. Respir Med 102: 1198–1202.

    Article  PubMed  CAS  Google Scholar 

  61. Moore, K.W., R. de Waal Malefyt, R.L. Coffman, et al. 2001. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765.

    Article  PubMed  CAS  Google Scholar 

  62. Abousaidi H., Vazirinejad R., Arababadi M. K., et al. 2011. Lack of association between chemokine receptor 5 (CCR5) C32 mutation and pathogenesis of Asthma: A Study on Iranian Asthma Patients. South Med J 104: 422–425.

    Google Scholar 

  63. Mitchell, T.J., A.J. Walley, J.E. Pease, et al. 2000. Delta 32 deletion of CCR5 gene and association with asthma or atopy. Lancet 356: 1491–1492.

    Article  PubMed  CAS  Google Scholar 

  64. Szalai, C., A. Bojszko, G. Beko, et al. 2000. Prevalence of CCR5delta32 in allergic diseases. Lancet 355: 66.

    Article  PubMed  CAS  Google Scholar 

  65. Nagy, A., G.T. Kozma, A. Bojszko, et al. 2002. No association between asthma or allergy and the CCR5Delta 32 mutation. Arch Dis Child 86: 426.

    Article  PubMed  CAS  Google Scholar 

  66. McGinnis, R., F. Child, S. Clayton, et al. 2002. Further support for the association of CCR5 allelic variants with asthma susceptibility. Eur J Immunogenet 29: 525–528.

    Article  PubMed  CAS  Google Scholar 

  67. Srivastava, P., P.J. Helms, D. Stewart, et al. 2003. Association of CCR5Delta32 with reduced risk of childhood but not adult asthma. Thorax 58: 222–226.

    Article  PubMed  CAS  Google Scholar 

  68. Hall, I.P., A. Wheatley, G. Christie, et al. 1999. Association of CCR5 delta32 with reduced risk of asthma. Lancet 354: 1264–1265.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Rafsanjan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazemi Arababadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorban, K., Dadmanesh, M., Hassanshahi, G. et al. Is the CCR5 Δ 32 Mutation Associated with Immune System-Related Diseases?. Inflammation 36, 633–642 (2013). https://doi.org/10.1007/s10753-012-9585-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9585-8

KEY WORDS

Navigation