Skip to main content

Stevioside Protects LPS-Induced Acute Lung Injury in Mice

Abstract

Stevioside, a diterpene glycoside component of Stevia rebaudiana, has been known to exhibit anti-inflammatory properties. To evaluate the effect and the possible mechanism of stevioside in lipopolysaccharide (LPS)-induced acute lung injury, male BALB/c mice were pretreated with stevioside or dexamethasone 1 h before intranasal instillation of LPS. Seven hours later, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid (BALF) were measured by using enzyme-linked immunosorbent assay. The number of total cells, neutrophils, and macrophages in the BALF were also determined. The right lung was excised for histological examination and analysis of myeloperoxidase activity and nitrate/nitrite content. Cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), nuclear factor-kappa B (NF-κB), inhibitory kappa B protein were detected by western blot. The results showed that stevioside markedly attenuated the LPS-induced histological alterations in the lung. Stevioside inhibited the production of pro-inflammatory cytokines and the expression of COX-2 and iNOS induced by LPS. In addition, not only was the wet-to-dry weight ratio of lung tissue significantly decreased, the number of total cells, neutrophils, and macrophages in the BALF were also significantly reduced after treatment with stevioside. Moreover, western blotting showed that stevioside inhibited the phosphorylation of IκB-α and NF-κB caused by LPS. Taken together, our results suggest that anti-inflammatory effect of stevioside against the LPS-induced acute lung injury may be due to its ability of inhibition of the NF-κB signaling pathway. Stevioside may be a promising potential therapeutic reagent for acute lung injury treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Lee, W.L., and G.P. Downey. 2001. Neutrophil activation and acute lung injury. Current Opinion in Critical Care 7: 1–7.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Puneet, P., S. Moochhala, and M. Bhatia. 2005. Chemokines in acute respiratory distress syndrome. American Journal of Physiology. Lung Cellular and Molecular Physiology 288: L3–L15.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Avecillas, J.F., A.X. Freire, and A.C. Arroliga. 2006. Clinical epidemiology of acute lung injury and acute respiratory distress syndrome: incidence, diagnosis, and outcomes. Clinics in Chest Medicine 27: 549–557. abstract vii.

    PubMed  Article  Google Scholar 

  4. 4.

    Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, et al. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353: 1685–1693.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Kristof, A.S., P. Goldberg, V. Laubach, and S.N. Hussain. 1998. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. American Journal of Respiratory and Critical Care Medicine 158: 1883–1889.

    PubMed  CAS  Google Scholar 

  6. 6.

    Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342: 1334–1349.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Chan, P., B. Tomlinson, Y.J. Chen, J.C. Liu, M.H. Hsieh, et al. 2000. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. British Journal of Clinical Pharmacology 50: 215–220.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Lee, C.N., K.L. Wong, J.C. Liu, Y.J. Chen, J.T. Cheng, et al. 2001. Inhibitory effect of stevioside on calcium influx to produce antihypertension. Planta Medica 67: 796–799.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Yasukawa, K., S. Kitanaka, and S. Seo. 2002. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biological and Pharmaceutical Bulletin 25: 1488–1490.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Boonkaewwan, C., C. Toskulkao, and M. Vongsakul. 2006. Anti-inflammatory and immunomodulatory activities of stevioside and its metabolite steviol on THP-1 cells. Journal of Agricultural and Food Chemistry 54: 785–789.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Boonkaewwan, C., M. Ao, C. Toskulkao, and M.C. Rao. 2008. Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. Journal of Agricultural and Food Chemistry 56: 3777–3784.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Sun, S., H. Zhang, B. Xue, Y. Wu, J. Wang, et al. 2006. Protective effect of glutathione against lipopolysaccharide-induced inflammation and mortality in rats. Inflammation Research 55: 504–510.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Yi, C., Y. Cao, S.H. Mao, H. Liu, L.L. Ji, et al. 2009. Recombinant human growth hormone improves survival and protects against acute lung injury in murine Staphylococcus aureus sepsis. Inflammation Research 58: 855–862.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Yunhe, F., L. Bo, F. Xiaosheng, L. Fengyang, L. Dejie, et al. 2012. The effect of magnolol on the toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 689: 255–261.

    PubMed  Article  Google Scholar 

  15. 15.

    Suda, K., M. Tsuruta, J. Eom, C. Or, T. Mui, et al. 2011. Acute lung injury induces cardiovascular dysfunction: effects of IL-6 and budesonide/formoterol. American Journal of Respiratory Cell and Molecular Biology 45: 510–516.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Wu, Y., M. Singer, F. Thouron, M. Alaoui-El-Azher, and L. Touqui. 2002. Effect of surfactant on pulmonary expression of type IIA PLA(2) in an animal model of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 282: L743–L750.

    PubMed  CAS  Google Scholar 

  17. 17.

    Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Cribbs, S.K., M.A. Matthay, and G.S. Martin. 2010. Stem cells in sepsis and acute lung injury. Critical Care Medicine 38: 2379–2385.

    PubMed  Article  Google Scholar 

  19. 19.

    Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14: 523–535.

    Article  CAS  Google Scholar 

  20. 20.

    Ricard, J.D., D. Dreyfuss, and G. Saumon. 2001. Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. American Journal of Respiratory and Critical Care Medicine 163: 1176–1180.

    PubMed  CAS  Google Scholar 

  21. 21.

    Park, W.Y., R.B. Goodman, K.P. Steinberg, J.T. Ruzinski, F. Radella 2nd, et al. 2001. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164: 1896–1903.

    PubMed  CAS  Google Scholar 

  22. 22.

    Gajic, O., M.A. Gropper, and R.D. Hubmayr. 2006. Pulmonary edema after transfusion: how to differentiate transfusion-associated circulatory overload from transfusion-related acute lung injury. Critical Care Medicine 34: S109–S113.

    PubMed  Article  Google Scholar 

  23. 23.

    Zhao, X., J.W. Zmijewski, E. Lorne, G. Liu, Y.J. Park, et al. 2008. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L497–L504.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Mabley, J., S. Gordon, and P. Pacher. 2011. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34: 231–237.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    El Kebir, D., L. Jozsef, W. Pan, and J.G. Filep. 2008. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation. Circulation Research 103: 352–359.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Chen, Z., X. Zhang, X. Chu, K. Song, Y. Jiang, et al. 2010. Preventive effects of valnemulin on lipopolysaccharide-induced acute lung injury in mice. Inflammation 33: 306–314.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Fukunaga, K., P. Kohli, C. Bonnans, L.E. Fredenburgh, and B.D. Levy. 2005. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. Journal of Immunology 174: 5033–5039.

    CAS  Google Scholar 

  28. 28.

    Christman, J.W., R.T. Sadikot, and T.S. Blackwell. 2000. The role of nuclear factor-kappa B in pulmonary diseases. Chest 117: 1482–1487.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Wright, J.G., and J.W. Christman. 2003. The role of nuclear factor kappa B in the pathogenesis of pulmonary diseases: implications for therapy. American Journal of Respiratory Medicine 2: 211–219.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual Review of Immunology 18: 621–663.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Karin, M. 1999. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. Journal of Biological Chemistry 274: 27339–27342.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the forestry industry research special funds for public welfare projects (No. 201204601)

Conflict of Interest

All authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Huimin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yingkun, N., Zhenyu, W., Jing, L. et al. Stevioside Protects LPS-Induced Acute Lung Injury in Mice. Inflammation 36, 242–250 (2013). https://doi.org/10.1007/s10753-012-9540-8

Download citation

KEY WORDS

  • stevioside
  • acute lung injury
  • cytokine
  • lipopolysaccharide