Skip to main content

Advertisement

Log in

Immunomodulatory and Anti-inflammatory Effect of p-Coumaric Acid, a Common Dietary Polyphenol on Experimental Inflammation in Rats

  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

In this study, p-coumaric acid was evaluated for its immunomodulatory and anti-inflammatory properties in vivo. The immunomodulatory effect of p-coumaric acid (100 mg/kg body weight) was assessed by evaluating its effect on cell-mediated immune responses (delayed type hypersensitivity reaction), serum immunoglobulin levels, and macrophage phagocytic index in rats. The anti-inflammatory effects of p-coumaric acid (100 mg/kg body weight) were investigated by examining its effect on expression of tumor necrosis factor (TNF-α) in synovial tissue by immunofluorescence confocal microscopy and circulating immune complexes in serum of adjuvant-induced arthritic rats. The increased cell-mediated immune responses and macrophage phagocytic index observed in control rats were significantly reduced (p < 0.05) upon treatment with p-coumaric acid implying its immunosuppressive property, whereas serum immunoglobulin levels were found to be increased in p-coumaric acid treated control rats. p-coumaric acid also showed significant (p < 0.05) anti-inflammatory effects in adjuvant-induced arthritic rats by effecting a decrease in the expression of inflammatory mediator TNF-α and circulating immune complexes. Indomethacin was used as a reference drug for anti-inflammatory studies. Thus, our results show that p-coumaric acid could be considered a potential immunosuppressive agent in treating autoimmune inflammatory diseases like rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Werner, R., and S.M. Campbell. 2000. Update in rheumatology. Annals of Internal Medicine 132: 125–133.

    Google Scholar 

  2. Firestein, G.S. 2003. Evolving concepts of rheumatoid arthritis. Nature 423: 356–361.

    Article  PubMed  CAS  Google Scholar 

  3. Tzianabos, A.O. 2000. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clinical Microbiology Reviews 13: 523–533.

    Article  PubMed  CAS  Google Scholar 

  4. Lu, J., S. Guan, X. Shen, W. Qian, G. Huang, X. Deng, and G. Xie. 2011. Immunosuppressive activity of 8-Gingerol on immune responses in mice. Molecules 16: 2636–2645.

    Article  PubMed  CAS  Google Scholar 

  5. Konishi, Y., S. Kobayashi, and M. Shimizu. 2003. Transepthelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry 67: 2317–2324.

    Article  PubMed  CAS  Google Scholar 

  6. Zang, L.Y., G. Cosma, H. Gardner, X. Shi, V. Castranova, and V. Vallyathan. 2000. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. American Journal of Physiology. Cell Physiology 279: 954–960.

    Google Scholar 

  7. Abdel-Wahab, M.H., M.A. El-Mahdy, M.F. Abd-Ellah, G.K. Helal, F. Khalifa, and F.M. Hamada. 2003. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart. Pharmacological Research 48: 461–465.

    Article  PubMed  CAS  Google Scholar 

  8. Hudson, E.A., P.A. Dinh, T. Kokubun, M.S. Simmonds, and A. Gescher. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology, Biomarkers & Prevention 9: 1163–1170.

    CAS  Google Scholar 

  9. Lodovici, M., S. Caldini, L. Morbidelli, V. Akpan, M. Ziche, and P. Dolara. 2009. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye. Toxicology 255: 1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Vauzour, D., G. Corona, and J.P. Spencer. 2010. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Archives of Biochemistry and Biophysics 501: 106–111.

    Article  PubMed  CAS  Google Scholar 

  11. Barros, M.P., M. Lemos, E.L. Maistro, M.F. Leite, J.P. Sousa, J.K. Bastos, and S.F. Andrade. 2008. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. Journal of Ethnopharmacology 120: 372–377.

    Article  PubMed  Google Scholar 

  12. Cho, J.Y., J.H. Moon, K.Y. Seong, and K.H. Park. 1998. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Bioscience, Biotechnology, and Biochemistry 62: 2273–2276.

    Article  PubMed  CAS  Google Scholar 

  13. Luceri, C., L. Giannini, M. Lodovici, E. Antonucci, R. Abbate, E. Masini, and P. Dolara. 2007. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. The British Journal of Nutrition 97: 458–463.

    Article  PubMed  CAS  Google Scholar 

  14. Ferguson, L.R., I.F. Lim, A.E. Pearson, J. Ralph, and P.J. Harris. 2003. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutation Research 542: 49–58.

    Article  PubMed  CAS  Google Scholar 

  15. Luceri, C., F. Guglielmi, M. Lodovici, L. Giannini, L. Messerini, and P. Dolara. 2004. Plant phenolic 4-coumaric acid protects against intestinal inflammation in rats. Scandinavian Journal of Gastroenterology 39: 1128–1133.

    PubMed  CAS  Google Scholar 

  16. Pragasam, S.J., V. Murunikkara, E.P. Sabina, and M. Rasool. 2012. Ameliorative effect of p-coumaric acid, a common dietary phenol, on adjuvant-induced arthritis in rats. Rheumatology International. doi:10.1007/s00296-012-2394-4.

  17. Benencia, F., M.C. Courrèges, and F.C. Coulombié. 2000. In vivo and in vitro immunomodulatory activities of Trichilia glabra aqueous leaf extracts. Journal of Ethnopharmacology 69: 199–205.

    Article  PubMed  CAS  Google Scholar 

  18. Gonda, R., M. Tomoda, N. Shimizu, and M. Kanari. 1990. Characterization of an acidic polysaccharide from the seeds of Malva verticillata stimulating the phagocytic activity of cells of the RES. Planta Medica 56: 73–76.

    Article  PubMed  CAS  Google Scholar 

  19. Rasool, M., and E.P. Sabina. 2007. Antiinflammatory effect of the Indian Ayurvedic herbal formulation Triphala on adjuvant-induced arthritis in mice. Phytotherapy Research 21: 889–894.

    Article  PubMed  CAS  Google Scholar 

  20. Seth, P., and R.V. Srinivas. 1981. Circulating immune complex in cervical cancer: simple method for detection and characterization. Indian Journal of Medical Research 73: 926–929.

    Google Scholar 

  21. Miller, L.E. 1991. In Manual of laboratory immunology, ed. H.R. Ludke, J.E. Peacock, and R.H. Tomar, 1–18. London: Lea and Febiger.

    Google Scholar 

  22. Askenase, P.W., and H. Van Loverent. 1983. Delayed-type hypersensitivity: activation of mast cells by antigen-specific T-cell factors initiates the cascade of cellular interactions. Immunology Today 4: 259–264.

    Article  Google Scholar 

  23. Dijkstra, C.D., E.A. Döpp, I. Huitinga, and J.G. Damoiseaux. 1992. Macrophages in experimental autoimmune diseases in the rat: a review. Current Eye Research 11: 75–79.

    Article  PubMed  Google Scholar 

  24. Kinne, R.W., R. Brӓuer, B. Stuhlmüller, E. Palombo-Kinne, and G.R. Burmester. 2000. Macrophages in rheumatoid arthritis. Arthritis Research 2: 189–202.

    Article  PubMed  CAS  Google Scholar 

  25. Halpern, B.N., B. Benacerraf, and G. Biozzi. 1953. Quantitative study of the granulopectic activity of the reticulo-endothelial system. I. The effect of the ingredients present in India ink and of substances affecting blood clotting in vivo on the fate of carbon particles administered intravenously in rats, mice and rabbits. The British Journal of Experimental Pathology 34(4): 426–440.

    CAS  Google Scholar 

  26. Theofilopoulous, A.N., and F.J. Dixon. 1979. The biology and detection of immune complexes. Advances in Immunology 28: 89–220.

    Article  Google Scholar 

  27. Hay, F.C., L.J. Nineham, R. Perumal, and I.M. Roitt. 1979. Intra-articular and circulating immune complexes and antiglobulins (IgG and IgM) in rheumatoid arthritis; correlation with clinical features. Annals of the Rheumatic Diseases 38: 1–7.

    Article  PubMed  CAS  Google Scholar 

  28. Bingham 3rd, C.O. 2002. The pathogenesis of rheumatoid arthritis: pivotal cytokines involved in bone degradation and inflammation. The Journal of Rheumatology. Supplement 65: 3–9.

    PubMed  CAS  Google Scholar 

  29. Bazzoni, F., and B. Beutler. 1996. The tumor necrosis factor ligand and receptor families. The New England journal of Medicine 334: 1717–1725.

    Article  PubMed  CAS  Google Scholar 

  30. Newton, R.C., and C.P. Decicco. 1999. Therapeutic potential and strategies for inhibiting tumor necrosis factor-alpha. Journal of Medicinal Chemistry 42: 2295–2314.

    Article  PubMed  CAS  Google Scholar 

  31. Nam, N.H., and Y.Y. Jae. 2009. NF-κB inhibitory activities of the methanolic extracts and some constituents therein of some Vietnamese medicinal plants. Scientia Pharmaceutica 77: 389–399.

    Article  CAS  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MahaboobKhan Rasool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pragasam, S.J., Venkatesan, V. & Rasool, M. Immunomodulatory and Anti-inflammatory Effect of p-Coumaric Acid, a Common Dietary Polyphenol on Experimental Inflammation in Rats. Inflammation 36, 169–176 (2013). https://doi.org/10.1007/s10753-012-9532-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9532-8

KEY WORDS

Navigation