Skip to main content
Log in

High-Throughput Analysis of Tumor Necrosis Factor Signaling Pathways in Eight Cell Types during Rat Hepatic Regeneration

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study aims to clarify the relevance of tumor necrosis factor (TNFs) signaling pathways and liver regeneration (LR) at the cellular level. Eight liver cell types were isolated using Percoll density gradient centrifugation and immunomagnetic beads methods. Expressions of TNF signaling pathway-involved genes in each cell type after 2/3 hepatectomy (PH) were detected using gene chip. Results show the following: gene TNFα was upregulated in most cell types, especially in Kupffer cells (KC); TNFβ expression was insignificantly changed in eight liver cell types; the majority of genes involved in four TNFα signaling pathways showed increased expression during LR in hepatocytes (HC); TNFα-induced NFκB pathway-involved genes were upregulated preferentially between 2 and 24 h during LR in biliary epithelial cells (BECs); and TNFα-induced apoptotic pathway genes were downregulated preferentially at progressing phase of LR in dendritic cells (DCs). Referring to the above results, TNFα-mediated signaling pathways, in contrast to TNFβ, play the more proactive role in LR, and four TNFα-mediated signaling pathways seem helpful to regulate biological events in HC; BEC proliferation was partly controlled by TNFα-mediated NFκB pathway; and the impaired TNFα-mediated apoptotic pathway in DCs might contribute to the restoration of DC mass after PH. Briefly, the comparative analysis of genomewide expression profiles of TNF signaling pathways between different cell types is helpful in understanding the implication of TNF signaling in LR at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Vaquero, J., K.J. Riehle, N. Fausto, and J.S. Campbell. 2011. Liver regeneration after partial hepatectomy is not impaired in mice with double deficiency of Myd88 and IFNAR genes. Gastroenterology Research and Practice 2011: 727403.

    Article  PubMed  Google Scholar 

  2. Xu, C., X. Chen, C. Chang, G. Wang, W. Wang, L. Zhang, Q. Zhu, L. Wang, and F. Zhang. 2010. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Development Genes and Evolution 220(9–10): 263–274.

    Article  PubMed  CAS  Google Scholar 

  3. Viebahn, C.S., and G.C. Yeoh. 2008. What fires prometheus? The link between inflammation and regeneration following chronic liver injury. The International Journal of Biochemistry & Cell Biology 40(5): 855–873.

    Article  CAS  Google Scholar 

  4. Campbell, J.S., K.J. Riehle, J.T. Brooling, R.L. Bauer, C. Mitchell, and N. Fausto. 2006. Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4. Journal of Immunology 176(4): 2522–2528.

    CAS  Google Scholar 

  5. Lin, X.M., Y.B. Liu, F. Zhou, Y.L. Wu, L. Chen, and H.Q. Fang. 2008. Expression of tumor necrosis factor-alpha converting enzyme in liver regeneration after partial hepatectomy. World Journal of Gastroenterology 14(9): 1353–1357.

    Article  PubMed  CAS  Google Scholar 

  6. Al-Anati, L., E. Essid, U. Stenius, K. Beuerlein, K. Schuh, and E. Petzinger. 2010. Differential cell sensitivity between OTA and LPS upon releasing TNF-α. Toxins (Basel) 2(6): 1279–1299.

    CAS  Google Scholar 

  7. Wullaert, A., G. van Loo, K. Heyninck, and R. Beyaert. 2007. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocrine Reviews 28: 365–386.

    Article  PubMed  CAS  Google Scholar 

  8. el-Naggar, E.A., F. Kanda, S. Okuda, N. Maeda, K. Nishimoto, H. Ishihara, and K. Chihara. 2004. Direct effects of tumor necrosis factor alpha (TNF-alpha) on L6 myotubes. The Kobe Journal of Medical Sciences 50(1-2): 39–46.

    PubMed  CAS  Google Scholar 

  9. Lazaros, L.A., N.V. Xita, A.L. Chatzikyriakidou, A.I. Kaponis, N.G. Grigoriadis, E.G. Hatzi, I.G. Grigoriadis, N.V. Sofikitis, K.A. Zikopoulos, and I.A. Georgiou. 2012. Association of TNFα, TNFR1, and TNFR2 polymorphisms with sperm concentration and motility. Journal of Andrology 33(1): 74–80.

    Article  PubMed  CAS  Google Scholar 

  10. Galun, E., and J.H. Axelrod. 2002. The role of cytokines in liver failure and regeneration: potential new molecular therapies. Biochimica et Biophysica Acta 1592(3): 345–358.

    Article  PubMed  CAS  Google Scholar 

  11. Hortelano, S., M. Zeini, M. Casado, P. Martín-Sanz, and L. Boscá. 2007. Animal models for the study of liver regeneration: role of nitric oxide and prostaglandins. Frontiers in Bioscience 12: 13–21.

    Article  PubMed  CAS  Google Scholar 

  12. Wullaert, A., K. Heyninck, and R. Beyaert. 2006. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochemical Pharmacology 72: 1090–1101.

    Article  PubMed  CAS  Google Scholar 

  13. Shimizu, T., S. Togo, T. Kumamoto, H. Makino, T. Morita, K. Tanaka, T. Kubota, Y. Ichikawa, Y. Nagasima, Y. Okazaki, Y. Hayashizaki, and H. Shimada. 2009. Gene expression during liver regeneration after partial hepatectomy in mice lacking type 1 tumor necrosis factor receptor. Journal of Surgical Research 152: 178–188.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, X., C. Xu, F. Zhang, and J. Ma. 2010. Comparative analysis of expression profiles of chemokines, chemokine receptors, and components of signaling pathways mediated by chemokines in eight cell types during rat liver regeneration. Genome 53(8): 608–618.

    Article  PubMed  CAS  Google Scholar 

  15. Higgins, G.M., and R.M. Anderson. 1931. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. Archives of Pathology 12: 186–202.

    Google Scholar 

  16. Vondran, F.W., E. Katenz, R. Schwartlander, M.H. Morgul, N. Raschzok, X. Gong, X. Cheng, D. Kehr, and I.M. Sauer. 2008. Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen. Artificial Organs 32(3): 205–213.

    Article  PubMed  Google Scholar 

  17. Kizawa, K. 2002. Isolation, culturing, and characterization of intrahepatic biliary epithelial cells from a PCK rat, a novel animal model of Caroli’s disease, with an emphasis on cell proliferation activity and expression of cell proliferation-related genes. Journal of the Juzen Medical Society 111(2/3): 162–172.

    CAS  Google Scholar 

  18. Xu, J., M. Aileni, S. Abbagani, and P. Zhang. 2010. A reliable and efficient method for total RNA isolation from various members of spurge family (Euphorbiaceae). Phytochemical Analysis 21(5): 395–398.

    Article  PubMed  CAS  Google Scholar 

  19. Scott, R.J. 1995. Isolation of whole cell (total) RNA. Methods in Molecular Biology 49: 197–202.

    PubMed  CAS  Google Scholar 

  20. Xiao, P., A. Tang, Z. Yu, Y. Gui, and Z. Cai. 2008. Gene expression profile of 2058 spermatogenesis-related genes in mice. Biological and Pharmaceutical Bulletin 31(2): 201–206.

    Article  PubMed  CAS  Google Scholar 

  21. Kube, D.M., C.D. Savci-Heijink, A.F. Lamblin, F. Kosari, G. Vasmatzis, J.C. Cheville, D.P. Connelly, and G.G. Klee. 2007. Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer. BMC Molecular Biology 8: 25.

    Article  PubMed  Google Scholar 

  22. Twigger, S. N., Smith, J., Zuniga-Meyer, A., and Bromberg, S. K. 2006. Exploring phenotypic data at the rat genome database. Curr Protoc Bioinformatics. Chapter 1: Unit 1.

  23. Wang, J.Z., Z. Du, R. Payattakool, P.S. Yu, and C.F. Chen. 2007. A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10): 1274–1281.

    Article  PubMed  CAS  Google Scholar 

  24. Guo, W., C. Cai, C. Wang, L. Zhao, L. Wang, and T. Zhang. 2008. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9: 314.

    Article  PubMed  Google Scholar 

  25. Yoon, J.R., P.D. Laible, M. Gu, H.N. Scott, and F.R. Collart. 2002. Express primer tool for high-throughput gene cloning and expression. Biotechniques 33(6): 1328–1333.

    PubMed  CAS  Google Scholar 

  26. Michalopoulos, G.K. 2010. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. American Journal of Pathology 176(1): 2–13.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng, Z.Y., S.Y. Weng, and Y. Yu. 2009. Signal molecule-mediated hepatic cell communication during liver regeneration. World Journal of Gastroenterology 15(46): 5776–5783.

    Article  PubMed  CAS  Google Scholar 

  28. Knight, B., and G.C. Yeoh. 2005. TNF/LTa double knockout mice display abnormal inflammatory and regenerative responses to acute and chronic liver injury. Cell and Tissue Research 319(1): 61–70.

    Article  PubMed  CAS  Google Scholar 

  29. Ackerman, H.C., G. Ribas, M. Jallow, R. Mott, M. Neville, F. Sisay-Joof, M. Pinder, R.D. Campbell, and D.P. Kwiatkowski. 2003. Complex haplotypic structure of the central MHC region flanking TNF in a West African population. Genes and Immunity 4(7): 476–486.

    Article  PubMed  CAS  Google Scholar 

  30. Yamada, Y., I. Kirillova, J.J. Peschon, and N. Fausto. 1997. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proceedings of the National Academy of Sciences of the United States of America 94(4): 1441–1446.

    Article  PubMed  CAS  Google Scholar 

  31. Luedde, T., U. Assmus, T. Wüstefeld, A. Meyer zu Vilsendorf, T. Roskams, M. Schmidt-Supprian, K. Rajewsky, D.A. Brenner, M.P. Manns, M. Pasparakis, and C. Trautwein. 2005. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. The Journal of Clinical Investigation 115(4): 849–859.

    PubMed  CAS  Google Scholar 

  32. Iimuro, Y., and J. Fujimoto. 2010. TLRs, NF-κB, JNK, and liver regeneration. Gastroenterology Research and Practice pii: 598109.

    Google Scholar 

  33. Surh, Y.J., and H.K. Na. 2008. NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genetics and Nutrition 2(4): 313–317.

    Article  CAS  Google Scholar 

  34. Rauert, H., T. Stühmer, R. Bargou, H. Wajant, and D. Siegmund. 2011. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell Death and Disease 2: e194.

    Article  PubMed  CAS  Google Scholar 

  35. Türeci, O., H. Bian, F.O. Nestle, L. Raddrizzani, J.A. Rosinski, A. Tassis, H. Hilton, M. Walstead, U. Sahin, and J. Hammer. 2003. Cascades of transcriptional induction during dendritic cell maturation revealed by genome-wide expression analysis. The FASEB Journal 17(8): 836–847.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Basic Research 973 Pre-research Program of China (No. 2010CB534905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunshuan Xu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The images of immunocytochemical staining showing the identification of eight isolated cell types at seven representative time points including 0, 6, 12, 36, 72, 120, and 168h after PH, respectively (40×). HC: hepatocyte; BEC: biliary epithelial cells; HOC: hepatic oval cell; HSC: hepatic stellate cell; SEC: sinusoidal endothelial cell; KC: Kupffer cell; PC: pit cells; DC: dendritic cell. (PDF 263 kb)

Supplementary Fig. 2

Heatmap displaying the temporal expressions of the LR-related genes involved in TNF signal pathway in eight liver cell types at different recovery time points after partial hepatectomy. The cladogram on the farthest left demonstrates the degree of similarity in expression patterns among genes. Lines in the dendrogram represent the measurement of difference. The longer line is, the greater the difference is between genes. Chip data of each sample are shown in columns; individual genes are shown in rows (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Xu, C. High-Throughput Analysis of Tumor Necrosis Factor Signaling Pathways in Eight Cell Types during Rat Hepatic Regeneration. Inflammation 35, 1538–1548 (2012). https://doi.org/10.1007/s10753-012-9469-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9469-y

KEY WORDS

Navigation