Advertisement

Inflammation

, Volume 35, Issue 4, pp 1276–1286 | Cite as

Connexin43 Modulation Inhibits Scarring in a Rabbit Eye Glaucoma Trabeculectomy Model

  • Narmadai C. Deva
  • Jie Zhang
  • Colin R. Green
  • Helen V. Danesh-Meyer
Article

Abstract

We investigated whether one subconjunctival injection of connexin43 antisense oligodeoxynucleotides (Cx43 AsODN) modulates postoperative scarring in a rabbit model of glaucoma trabeculectomy surgery. In a randomised, controlled, masked-observer study, 39 rabbits underwent trabeculectomy surgery with insertion of a 22-gauge cannula in the right eyes and were randomly divided into three treatment groups. Each rabbit received an injection of Cx43 AsODN in Pluronic gel, balanced salt solution or Pluronic gel alone into the formed bled. The animals were euthanized at 8 and 24 h and at 5 and 21 days. Histology and immunohistochemistry results demonstrated that Cx43 AsODN decreased Cx43 upregulation at 8 and 24 h which led to less myofibroblast upregulation at days 5 and 21 and reduced scarring at day 21 compared to controls. We conclude that postoperative use of Cx43 AsODN inhibited subconjunctival scarring and fibrosis. Cx43 AsODN injection may be a safe and effective anti-scarring agent in glaucoma trabeculectomy surgery.

KEY WORDS

scar reduction gap junction connexin43 glaucoma trabeculectomy 

ABBREVIATIONS

5-FU

5-Fluorouracil

α-SMA

Alpha smooth muscle actin

BSS

Balanced salt solution

Cx43

Connexin 43

Cx43 AsODN

Connexin43 antisense oligodeoxynucleotides

IOP

Intraocular pressure

MMC

Mitomycin-C

REFERENCES

  1. 1.
    Quigley, H.A., and A.T. Broman. 2006. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology 90: 262–267.PubMedCrossRefGoogle Scholar
  2. 2.
    Watson, P.G. 1972. Surgery of the glaucomas. British Journal of Ophthalmology 56: 299–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Cairns, J.E. 1968. Trabeculectomy. Preliminary report of a new method. American Journal of Ophthalmology 66: 673–679.PubMedGoogle Scholar
  4. 4.
    Skuta, G.L., and R.K. Parrish 2nd. 1987. Wound healing in glaucoma filtering surgery. Survey of Ophthalmology 32: 149–170.PubMedCrossRefGoogle Scholar
  5. 5.
    Addicks, E.M., H.A. Quigley, W.R. Green, and A.L. Robin. 1983. Histologic characteristics of filtering blebs in glaucomatous eyes. Archives of Ophthalmology 101: 795–798.PubMedCrossRefGoogle Scholar
  6. 6.
    Migdal, C., and R. Hitchings. 1983. The developing bleb: Effect of topical antiprostaglandins on the outcome of glaucoma fistulising surgery. British Journal of Ophthalmology 67: 655–660.PubMedCrossRefGoogle Scholar
  7. 7.
    Messmer, E.M., D.M. Zapp, M.J. Mackert, M. Thiel, and A. Kampik. 2006. In vivo confocal microscopy of filtering blebs after trabeculectomy. Archives of Ophthalmology 124: 1095–1103.PubMedCrossRefGoogle Scholar
  8. 8.
    Jones, E., J. Clarke, and P.T. Khaw. 2005. Recent advances in trabeculectomy technique. Current Opinion in Ophthalmology 16: 107–113.PubMedCrossRefGoogle Scholar
  9. 9.
    Khaw, P.T., M.B. Sherwood, J.W. Doyle, M.F. Smith, I. Grierson, S. McGorray, and G.S. Schultz. 1992. Intraoperative and post operative treatment with 5-fluorouracil and mitomycin-c: Long term effects in vivo on subconjunctival and scleral fibroblasts. International Ophthalmology 16: 381–385.PubMedCrossRefGoogle Scholar
  10. 10.
    Khaw, P.T., J.W. Doyle, M.B. Sherwood, I. Grierson, G. Schultz, and S. McGorray. 1993. Prolonged localized tissue effects from 5-minute exposures to fluorouracil and mitomycin C. Archives of Ophthalmology 111: 263–267.PubMedCrossRefGoogle Scholar
  11. 11.
    Greenfield, D.S., J.M. Liebmann, J. Jee, and R. Ritch. 1998. Late-onset bleb leaks after glaucoma filtering surgery. Archives of Ophthalmology 116: 443–447.PubMedGoogle Scholar
  12. 12.
    Higginbotham, E.J., R.K. Stevens, D.C. Musch, K.O. Karp, P.R. Lichter, T.J. Bergstrom, and G.L. Skuta. 1996. Bleb-related endophthalmitis after trabeculectomy with mitomycin C. Ophthalmology 103: 650–656.PubMedGoogle Scholar
  13. 13.
    Bindlish, R., G.P. Condon, J.D. Schlosser, J. D’Antonio, K.B. Lauer, and R. Lehrer. 2002. Efficacy and safety of mitomycin-C in primary trabeculectomy: Five-year follow-up. Ophthalmology 109: 1336–1341. discussion 1341–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Evans, W.H., E. De Vuyst, and L. Leybaert. 2006. The gap junction cellular internet: Connexin hemichannels enter the signalling limelight. Biochemical Journal 397: 1–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Goodenough, D.A., J.A. Goliger, and D.L. Paul. 1996. Connexins, connexons, and intercellular communication. Annual Review of Biochemistry 65: 475–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Bruzzone, R., T.W. White, and D.A. Goodenough. 1996. The cellular internet: On-line with connexins. Bioessays 18: 709–718.PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar, N.M., and N.B. Gilula. 1996. The gap junction communication channel. Cell 84: 381–388.PubMedCrossRefGoogle Scholar
  18. 18.
    Beyer, E.C., and T.H. Steinberg. 1991. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. Journal of Biological Chemistry 266: 7971–7974.PubMedGoogle Scholar
  19. 19.
    Oviedo-Orta, E., P. Gasque, and W.H. Evans. 2001. Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication. The FASEB Journal 15: 768–774.CrossRefGoogle Scholar
  20. 20.
    Oviedo-Orta, E., T. Hoy, and W.H. Evans. 2000. Intercellular communication in the immune system: Differential expression of connexin40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations. Immunology 99: 578–590.PubMedCrossRefGoogle Scholar
  21. 21.
    Kwak, B.R., M.S. Pepper, D.B. Gros, and P. Meda. 2001. Inhibition of endothelial wound repair by dominant negative connexin inhibitors. Molecular Biology of the Cell 12: 831–845.PubMedGoogle Scholar
  22. 22.
    Oviedo-Orta, E., R.J. Errington, and W.H. Evans. 2002. Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biology International 26: 253–263.PubMedCrossRefGoogle Scholar
  23. 23.
    Ehrlich, H.P., G. Gabbiani, and P. Meda. 2000. Cell coupling modulates the contraction of fibroblast-populated collagen lattices. Journal of Cellular Physiology 184: 86–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Coutinho, P., C. Qiu, S. Frank, C.M. Wang, T. Brown, C.R. Green, and D.L. Becker. 2005. Limiting burn extension by transient inhibition of connexin43 expression at the site of injury. British Journal of Plastic Surgery 58: 658–667.PubMedCrossRefGoogle Scholar
  25. 25.
    Qiu, C., P. Coutinho, S. Frank, S. Franke, L.Y. Law, P. Martin, C.R. Green, and D.L. Becker. 2003. Targeting connexin43 expression accelerates the rate of wound repair. Current Biology 13: 1697–1703.PubMedCrossRefGoogle Scholar
  26. 26.
    Mori, R., K.T. Power, C.M. Wang, P. Martin, and D.L. Becker. 2006. Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. Journal of Cell Science 119: 5193–5203.PubMedCrossRefGoogle Scholar
  27. 27.
    Cronin, M., P.N. Anderson, J.E. Cook, C.R. Green, and D.L. Becker. 2008. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Molecular and Cellular Neuroscience 39: 152–160.PubMedCrossRefGoogle Scholar
  28. 28.
    Danesh-Meyer, H.V., R. Huang, L.F.B. Nicholson, and C.R. Green. 2008. Connexin43 antisense oligodeoxynucleotide treatment down-regulates the inflammatory response in an in vitro interphase organotypic culture model of optic nerve ischaemia. Journal of Clinical Neuroscience 15: 1253–1263.PubMedCrossRefGoogle Scholar
  29. 29.
    Cordeiro, M.F., P.H. Constable, R.A. Alexander, S.S. Bhattacharya, and P.T. Khaw. 1997. Effect of varying the mitomycin-C treatment area in glaucoma filtration surgery in the rabbit. Investigative Ophthalmology & Visual Science 38: 1639–1646.Google Scholar
  30. 30.
    Green, C.R., L.Y. Law, J.S. Lin, and D.L. Becker. 2001. Spatiotemporal depletion of connexins using antisense oligonucleotides. Methods in Molecular Biology 154: 175–185.PubMedGoogle Scholar
  31. 31.
    Law, L.Y., W.V. Zhang, N.S. Stott, D.L. Becker, and C.R. Green. 2006. In vitro optimization of antisense oligodeoxynucleotide design: An example using the connexin gene family. Journal of Biomolecular Techniques 17: 270–282.PubMedGoogle Scholar
  32. 32.
    Ratkay-Traub, I., B. Hopp, Z. Bor, L. Dux, D.L. Becker, and T. Krenacs. 2001. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: A study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Experimental Eye Research 73: 291–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Darby, I., O. Skalli, and G. Gabbiani. 1990. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Laboratory Investigation 63: 21–29.PubMedGoogle Scholar
  34. 34.
    Coleman, R. 2011. Picrosirius red staining revisited. Acta Histochemica 113: 231–233.PubMedCrossRefGoogle Scholar
  35. 35.
    Dayan, D., Y. Hiss, A. Hirshberg, J.J. Bubis, and M. Wolman. 1989. Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers? Histochemistry 93: 27–29.PubMedCrossRefGoogle Scholar
  36. 36.
    Bergstrom, T.J., W.S. Wilkinson, G.L. Skuta, R.L. Watnick, and V.M. Elner. 1991. The effects of subconjunctival mitomycin-C on glaucoma filtration surgery in rabbits. Archives of Ophthalmology 109: 1725–1730.PubMedCrossRefGoogle Scholar
  37. 37.
    Akman, A., B. Bilezikci, C. Kucukerdonmez, B. Demirhan, and P. Aydin. 2003. Suramin modulates wound healing of rabbit conjunctiva after trabeculectomy: Comparison with mitomycin C. Current Eye Research 26: 37–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Wong, T.T.L., A.L. Mead, and P.T. Khaw. 2005. Prolonged antiscarring effects of ilomastat and MMC after experimental glaucoma filtration surgery. Investigative Ophthalmology & Visual Science 46: 2018–2022.CrossRefGoogle Scholar
  39. 39.
    Memarzadeh, F., R. Varma, L.-T. Lin, J.G. Parikh, L. Dustin, A. Alcaraz, and D. Eliott. 2009. Postoperative Use of bevacizumab as an antifibrotic agent in glaucoma filtration surgery in the rabbit. Investigative Ophthalmology & Visual Science 50: 3233–3237.CrossRefGoogle Scholar
  40. 40.
    Mead, A.L., T.T.L. Wong, M.F. Cordeiro, I.K. Anderson, and P.T. Khaw. 2003. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Investigative Ophthalmology & Visual Science 44: 3394–3401.CrossRefGoogle Scholar
  41. 41.
    Takeuchi, K., M. Nakazawa, Y. Ebina, K. Sato, T. Metoki, Y. Miyagawa, and T. Ito. 2010. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery. Experimental Eye Research 91: 567–577.PubMedCrossRefGoogle Scholar
  42. 42.
    Wong, T.T.L., A.L. Mead, and P.T. Khaw. 2003. Matrix metalloproteinase inhibition modulates postoperative scarring after experimental glaucoma filtration surgery. Investigative Ophthalmology & Visual Science 44: 1097–1103.CrossRefGoogle Scholar
  43. 43.
    Risek, B., F.G. Klier, and N.B. Gilula. 1994. Developmental regulation and structural organization of connexins in epidermal gap junctions. Developmental Biology 164: 183–196.PubMedCrossRefGoogle Scholar
  44. 44.
    Chin, K.Y. 2011. Connexins, a new target in wound treatment. Journal of Wound Care 20: 386–390.PubMedGoogle Scholar
  45. 45.
    Brandner, J.M., P. Houdek, B. Husing, C. Kaiser, and I. Moll. 2004. Connexins 26, 30, and 43: Differences among spontaneous, chronic, and accelerated human wound healing. Journal of Investigative Dermatology 122: 1310–1320.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang, C.M., J. Lincoln, J.E. Cook, and D.L. Becker. 2007. Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56: 2809–2817.PubMedCrossRefGoogle Scholar
  47. 47.
    Li, Z., T. Van Bergen, S. Van de Veire, I. Van de Vel, H. Moreau, M. Dewerchin, P.C. Maudgal, T. Zeyen, W. Spileers, L. Moons, and I. Stalmans. 2009. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Investigative Ophthalmology & Visual Science 50: 5217–5225.CrossRefGoogle Scholar
  48. 48.
    Cordeiro, M.F., J.A. Gay, and P.T. Khaw. 1999. Human anti-transforming growth factor-beta2 antibody: A new glaucoma anti-scarring agent. Investigative Ophthalmology & Visual Science 40: 2225–2234.Google Scholar
  49. 49.
    Seetner, A., and J.D. Morin. 1979. Healing of trabeculectomies in rabbits. Canadian Journal of Ophthalmology 14: 121–125.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Narmadai C. Deva
    • 1
  • Jie Zhang
    • 1
  • Colin R. Green
    • 1
  • Helen V. Danesh-Meyer
    • 1
  1. 1.Department of OphthalmologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations