Skip to main content

Advertisement

Log in

Acute Oxidative Stress Affects IL-8 and TNF-α Expression in IPEC-J2 Porcine Epithelial Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Reactive oxygen species are implicated in cell and tissue damage in a number of diseases including acute and chronic inflammation of the gut. Effects of H2O2 exposure on non-carcinogenic porcine epithelial cell line, IPEC-J2 cells cultured on collagen-coated membrane inserts were monitored based on transepithelial electrical resistance (TER) change, extent of necrotic cell damage, gene expression of inflammatory cytokines IL-8 and TNF-α. Furthermore, the junction proteins claudin-1 and E-cadherin were also investigated by immunohistochemistry. Peroxide (1mM) increased IL-8 and TNF-α gene expression levels significantly allowing 1 h recovery time without affecting the cellular distribution of junction proteins, TER and cell survival rate. In conclusion, the IPEC-J2 cell line on membrane insert was introduced as a fast and reliable investigation tool for oxidative stimuli-triggered intestinal inflammation and in the future as a screening method for antioxidant and probiotic candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao, R.K., R.D. Baker, S.S. Baker, A. Gupta, and M. Holycross. 1997. Oxidant-induced disruption of intestinal epithelial barrier function: Role of protein tyrosine phosphorylation. AJP-Gastrointestinal and Liver Physiology 273: G812–G823.

    CAS  Google Scholar 

  2. Meyer, T.N., C. Schwesinger, J. Ye, B.M. Denker, and S.K. Nigam. 2001. Reassembly of the tight junction after oxidative stress depends on tyrosinase kinase activity. Journal of Biological Chemistry 276: 22048–22055.

    Article  PubMed  CAS  Google Scholar 

  3. Son, D.O., H. Satsu, and M. Shimizu. 2005. Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Letters 579: 4671–4677.

    Article  PubMed  CAS  Google Scholar 

  4. Yamamoto, K., R. Kushima, O. Kisaki, Y. Fujiyama, and H. Okabe. 2003. Combined effect of hydrogen peroxide induced oxidative stress and IL-1alpha on IL-8 production in CaCo-2 cells (a human colon carcinoma cell line) and normal intestinal epithelial cells. Inflammation 27: 123–128.

    Article  PubMed  CAS  Google Scholar 

  5. Shimada, T., N. Watanabe, H. Hiraishi, and A. Terano. 1999. Redox regulation of interleukin-8 expression in MKN 28 cells. Digestive Diseases and Sciences 44: 266–273.

    Article  PubMed  CAS  Google Scholar 

  6. Sen, C.K., and L. Packer. 1996. Antioxidant and redox regulation of gene transcription. The FASEB Journal 10: 709–720.

    CAS  Google Scholar 

  7. Sun, Y., and L.W. Oberley. 1996. Redox regulation of transcriptional activators. Free Radical Biology & Medicine 21: 335–348.

    Article  CAS  Google Scholar 

  8. Berschneider, H.M. 1989. Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl. Gastroenterology 96: A41.

    Google Scholar 

  9. Cencic, A., and T. Langerholc. 2010. Functional cell models of the gut and their applications in food microbiology—A review. International Journal of Food Microbiology 141: S4–S14.

    Article  PubMed  Google Scholar 

  10. Schierack, P., M. Nordhoff, M. Pollmann, K.D. Weyrauch, S. Amasheh, U. Lodemann, J. Jores, B. Tachu, S. Kleta, A. Blikslager, K. Tedin, and L.H. Wieler. 2006. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochemistry and Cell Biology 125: 293–305.

    Article  PubMed  CAS  Google Scholar 

  11. González-Mariscal, L., A. Betanzos, P. Nava, and B.E. Jaramillo. 2003. Tight junction proteins. Progress in Biophysics and Molecular Biology 81: 1–44.

    Article  PubMed  Google Scholar 

  12. Oliveira, S.S., and J.A. Morgado-Diaz. 2007. Claudins: Multifunctional players in epithelial tight junctions and their role in cancer. Cellular and Molecular Life Science 64: 17–28.

    Article  CAS  Google Scholar 

  13. Reyes, J.L., M. Lamas, D. Martin, M. del Carmen Namorado, S. Islas, J. Luna, M. Tauc, and L. González-Mariscal. 2002. The renal segmental distribution of claudins changes with development. Kidney International 62: 476–487.

    Article  PubMed  CAS  Google Scholar 

  14. Inai, T., J. Kobayashi, and Y. Shibata. 1999. Claudin-1 contributes to the epithelial barrier function in MDCK cells. European Journal of Cell Biology 78: 849–855.

    Article  PubMed  CAS  Google Scholar 

  15. McCarthy, K.M., S.A. Francis, J.M. McCormack, J. Lai, R.A. Rogers, I.B. Skare, R.D. Lynch, and E.E. Schneeberger. 2000. Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. Journal of Cell Science 113: 3387–3398.

    PubMed  CAS  Google Scholar 

  16. Sonoda, N., M. Furuse, H. Sasaki, S. Yonemura, J. Katahira, Y. Horiguchi, and S. Tsukita. 1999. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. The Journal of Cell Biology 147: 195–204.

    Article  PubMed  Google Scholar 

  17. Hou, J., A.S. Gomes, D.L. Paul, and D.A. Goodenough. 2006. Study of claudin function by RNA interference. Journal of Biological Chemistry 281: 36117–36123.

    Article  PubMed  CAS  Google Scholar 

  18. Oshima, T., M. Sasaki, H. Kataoka, H. Miwa, T. Takeuchi, and T. Joh. 2007. Wip1 protects hydrogen peroxide-induced colonic epithelial barrier dysfunction. Cellular and Molecular Life Science 64: 3139–3147.

    Article  CAS  Google Scholar 

  19. Park, J.Y., K.H. Park, T.Y. Oh, S.P. Hong, T.J. Jeon, C.H. Kim, S.W. Park, J.B. Chung, S.Y. Song, and S. Bang. 2007. Up-regulated claudin 7 expression in intestinal-type gastric carcinoma. Oncology Reports 18: 377–382.

    PubMed  CAS  Google Scholar 

  20. Van Itallie, C., C. Rahner, and J.M. Anderson. 2001. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. Journal of Clinical Investigation 107: 1319–1327.

    Article  PubMed  Google Scholar 

  21. Hashimoto, K., T. Oshima, T. Tomita, Y. Kim, T. Matsumoto, T. Joh, and H. Miwa. 2008. Oxidative stress induces gastric epithelial permeability through claudin-3. Biochemical and Biophysical Research Communications 376: 154–157.

    Article  PubMed  CAS  Google Scholar 

  22. Nowak, D. 1990. Hydrogen peroxide release from human polymorphonuclear leukocytes measured with horseradish peroxidase and o-dianisidine. Effect of various stimulators and cytochalasin B. Biomedica Biochimica Acta 49: 353–362.

    PubMed  CAS  Google Scholar 

  23. Sakumoto, R., T. Komatsu, E. Kasuya, T. Saito, and K. Okuda. 2006. Expression of mRNAs for interleukin-4, interleukin-6 and their receptors in porcine corpus luteum during the estrous cycle. Domestic Animal Endocrinology 31: 246–257.

    Article  PubMed  CAS  Google Scholar 

  24. Hyland, K.A., D.R. Brown, and M.P. Murtaugh. 2006. Salmonella enterica serovar Choleraesuis infection of the porcine jejunal Peyer's patch rapidly induces IL-1beta and IL-8 expression. Veterinary Immunology and Immunpathology 109: 1–11.

    Article  CAS  Google Scholar 

  25. Nygard, A.B., C.B. Jorgensen, S. Cirera, and M. Fredholm. 2007. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biology 8: 67.

    Article  PubMed  Google Scholar 

  26. Nemeth, E., A. Halasz, A. Barath, M. Domokos, and P. Galfi. 2007. Effect of hydrogen peroxide on interleukin-8 synthesis and death of Caco-2 cells. Immunpharmacology and Immuntoxicology 29: 297–310.

    Article  CAS  Google Scholar 

  27. Davies, K.J. 1995. Oxidative stress: The paradox of aerobic life. Biochemical Society Symposia 61: 1–31.

    CAS  Google Scholar 

  28. Finkel, T., and N.J. Holbrook. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809): 239–247.

    Article  PubMed  CAS  Google Scholar 

  29. Schroder, P., and J. Krutmann. 2005. Environmental oxidative stress—Environmental sources of ROS. In: The Handbook of Environmental Chemistry, Springer-Verlag, Berlin/Heidelberg, pp. 19–31

  30. Harris, M.L., H.J. Schiller, P.M. Reilly, M. Donowitz, M.B. Grisham, and G.B. Bulkley. 1992. Free radicals and other reactive oxygen metabolites in inflammatory bowel disease: Cause, consequence or epiphenomenon? Pharmacology and Therapeutics 53: 375–408.

    Article  PubMed  CAS  Google Scholar 

  31. Blau, S., A. Rubinstein, P. Bass, C. Singaram, and R. Kohen. 1999. Differences in the reducing power along the rat GI tract: Lower antioxidant capacity of the colon. Molecular and Cellular Biochemistry 194: 185–191.

    Article  PubMed  CAS  Google Scholar 

  32. Giandomenico, A.R., G.E. Cerniglia, J.E. Biaglow, C.W. Stevens, and C.J. Koch. 1997. The importance of sodium pyruvate in assessing damage produced by hydrogen peroxide. Free Radical Biology & Medicine 23: 426–434.

    Article  CAS  Google Scholar 

  33. Jacewicz, D., M. Szkatula, A. Chylewska, A. Dabrowska, M. Wozniak, and L. Chmurzynsk. 2008. Coordinate cis-[Cr(C2O4)(pm)(OH2)2]+ cation as molecular biosensor of pyruvate’s protective activity against hydrogen peroxide mediated cytotoxity. Sensors 8: 4487–4504.

    Article  CAS  Google Scholar 

  34. Bienert, G.P., J.K. Schjoerring, and T.P. Jahn. 2006. Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta 1758: 994–1003.

    Article  PubMed  CAS  Google Scholar 

  35. Antunes, F., and E. Cadenas. 2000. Estimation of H2O2 gradients across biomembranes. FEBS Letters 475: 121–126.

    Article  PubMed  CAS  Google Scholar 

  36. Valko, M., D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39: 44–84.

    Article  CAS  Google Scholar 

  37. Saberi, B., M. Shinohara, M.D. Ybanez, N. Hanawa, W.A. Gaarde, N. Kaplowitz, and D. Han. 2008. Regulation of H2O2-induced necrosis by PKC and AMP-activated kinase signaling in primary cultured hepatocytes. AJP-Cell Physiology 295: C50–C63.

    Article  PubMed  CAS  Google Scholar 

  38. Sheth, P., S. Basuroy, C. Li, A.P. Naren, and R.K. Rao. 2003. Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. Journal of Biological Chemistry 278: 49239–49245.

    Article  PubMed  CAS  Google Scholar 

  39. Seth, A., F. Yan, D.B. Polk, and R.K. Rao. 2008. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. AJP-Gastrointestinal and Liver Physiology 294: G1060–G1069.

    Article  CAS  Google Scholar 

  40. Miyauchi, E., H. Morita, and S. Tanabe. 2009. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. Journal of Diary Science 92: 2400–2408.

    Article  CAS  Google Scholar 

  41. Qin, H., Z. Zhang, X. Hang, and Y. Jiang. 2009. L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiology 9: 63.

    Article  PubMed  Google Scholar 

  42. Mennigen, R., K. Nolte, E. Rijcken, M. Utech, B. Loeffler, N. Senninger, and M. Bruewer. 2009. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. AJP-Gastrointestinal and Liver Physiology 296: G1140–G1149.

    Article  CAS  Google Scholar 

  43. Stadnyk, A.W. 1994. Cytokine production by epithelial cells. The FASEB Journal 8: 1041–1047.

    CAS  Google Scholar 

  44. Dinarello, C.A. 2000. Proinflammatory cytokines. Chest 118: 503–508.

    Article  PubMed  CAS  Google Scholar 

  45. Walsh, S.V., A.M. Hopkins, and A. Nusrat. 2000. Modulation of tight junction structure and function by cytokines. Advanced Drug Delivery Reviews 41: 303–313.

    Article  PubMed  CAS  Google Scholar 

  46. Ma, T.Y., J.K. Ivamoto, N.T. Hoa, V. Akotia, A. Pedram, M.A. Boivin, and H.M. Said. 2004. TNF-alpha- increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. AJP-Gastrointestinal and Liver Physiology 286: G364–G376.

    Google Scholar 

  47. Ye, D., I. Ma, and T.Y. Ma. 2006. Molecular mechanism of tumor necrosis factor alpha modulation of intestinal epithelial tight junction barrier. AJP-Gastrointestinal and Liver Physiology 290: G496–G504.

    Article  CAS  Google Scholar 

  48. Tabibzadeh, S., Q.F. Kong, S. Kapur, P.G. Satyaswaroop, and K. Aktories. 1995. Tumor necrosis factor-alpha-mediated dyscohesion of epithelial cells is associated with disordered expression of cadherin/beta-catenin and disassembly of actin filaments. Human Reproduction 10: 994–1004.

    PubMed  CAS  Google Scholar 

  49. Schmitz, H., M. Fromm, C.J. Bentzel, P. Scholz, K. Detjen, J. Mankertz, H. Bode, H.J. Epple, E.O. Riecken, and J.D. Schulzke. 1999. TNF alpha regulates the epithelial barrier in the human intestinal cell line HT-29/B6. Journal of Cell Science 112: 137–146.

    PubMed  CAS  Google Scholar 

  50. Rollo, E.E., S.J. Hempson, A. Bansal, E. Tsao, I. Habib, S.R. Ritting, D.T. Denhardt, E.R. Mackow, and R.D. Shaw. 2005. The cytokine osteopontin modulates the severity of rotavirus diarrhoea. Journal of Virology 79: 3509–3516.

    Article  PubMed  CAS  Google Scholar 

  51. Johnson, A.M., R.S. Kaushik, and P.R. Hardwidge. 2010. Disruption of transepithelial resistance by enterotoxigenic Escherichia coli. Veterinary Microbiology 141: 115–119.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The research described here has been supported by the Hungarian Scientific Research Fund (grant OTKA no. 76133). We are indebted to Dr. Jody Gookin and Dr. Stephen Stauffer, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, for providing IPEC-J2 cells and for the valuable advice on handling them. We also would to thank Dr. Adam Csordas, Division of Medical Biochemistry, Biocenter, Innbruck Medical University, Innsbruck, Austria, for critical reading of the manuscript. Besides useful practical and theoretical guidance, support in sequencing of PCR product (IL-8) from Dr. Balazs Gereben, Department of Endocrine Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzsebet Paszti-Gere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paszti-Gere, E., Csibrik-Nemeth, E., Szeker, K. et al. Acute Oxidative Stress Affects IL-8 and TNF-α Expression in IPEC-J2 Porcine Epithelial Cells. Inflammation 35, 994–1004 (2012). https://doi.org/10.1007/s10753-011-9403-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9403-8

KEY WORDS

Navigation