, Volume 34, Issue 6, pp 639–644 | Cite as

Anti-inflammation Effects of Cordyceps sinensis Mycelium in Focal Cerebral Ischemic Injury Rats

  • Zhenquan Liu
  • Pengtao Li
  • Dan Zhao
  • Huiling Tang
  • Jianyou GuoEmail author


Brain ischemia–reperfusion (IR) triggers a complex series of biochemical events including inflammation. To test the neuroprotective efficacy of Cordyceps sinensis mycelium (CSM) in a rat model of focal cerebral IR, ischemic animals were treated with CSM. They were evaluated at 24 h after reperfusion for neurological deficit score. Furthermore, the mechanism of the anti-inflammatory potential of CSM in the regulation of nuclear factor kappaB, polymorphonuclear cells (PMN), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), adhesion molecule (ICAM-1), and cyclooxygenase-2 (COX-2) was determined by ELISA and immunohistochemistry. CSM significantly inhibited IR-induced up-regulation of NF-kappaB activation and the brain production of IL-1β, TNF-α, iNOS, ICAM-1, and COX-2. Moreover, CSM suppressed infiltration of PMN. The study demonstrates the neuroprotective potential of CSM inhibition through anti-inflammation in a rat model of ischemia–reperfusion.


CSM inflammation ischemia–reperfusion inflammatory cells inflammatory mediators 



This work was supported by the Key New Drugs Innovation project from Ministry of Science and Technology (2009ZX09502-017), the project from Key Laboratory of Mental Health, Chinese Academy of Sciences, Young Scientist project from IPCAS (08CX043004), NNSF grant (30800301), the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-254).


  1. 1.
    Lindsberg, P.J., and A.J. Grau. 2003. Inflammation and infections as risk factors for ischemic stroke. Stroke 34: 2518–2532.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang, X., and G.Z. Feuerstein. 2000. Role of immune and inflammatory mediators in CNS injury. Drug News & Perspectives 13: 133–140.CrossRefGoogle Scholar
  3. 3.
    Donnan, G.A., M. Fisher, M. Macleod, and S.M. Davis. 2008. Stroke. Lancet 371: 1612–1623.PubMedCrossRefGoogle Scholar
  4. 4.
    Han, C.C., and J.Y. Guo. 2010. A hypothesis: Supplementation with mushroom-derived active compound modulates immunity and increases survival in response to influenza virus (H1N1) infection. Evidence-Based Complementary and Alternative Medicine. doi: 10.1093/ecam/neq037.Google Scholar
  5. 5.
    Zhu, J.S., G.M. Halpern, and K. Jones. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. Journal of Alternative and Complementary Medicine 4: 289–303.CrossRefGoogle Scholar
  6. 6.
    Kuo, Y.C., W.J. Tsai, M.S. Shiao, C.F. Chen, and C.Y. Lin. 1996. Cordyceps sinensis as an immunomodulatory agent. The American Journal of Chinese Medicine 24: 111–125.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang, L.Y., A. Chen, Y.C. Kuo, and C.Y. Lin. 1999. Efficacy of a pure compound H1-A extracted from Cordyceps sinensis on autoimmune disease of MRL lpr/lpr mice. The Journal of Laboratory and Clinical Medicine 134: 492–500.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuo, Y.C., W.J. Tsai, J.Y. Wang, S.C. Chang, C.Y. Lin, and M.S. Shiao. 2001. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sciences 68: 1067–1082.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuo, Y.C., C.Y. Lin, W.J. Tsai, C.L. Wu, C.F. Chen, and M.S. Shiao. 1994. Growth inhibitors against tumor cells in Cordyceps sinensis other than cordycepin and polysaccharides. Cancer Investigation 12: 611–615.PubMedCrossRefGoogle Scholar
  10. 10.
    Bok, J.W., L. Lermer, J. Chilton, H.G. Klingeman, and G.H. Towers. 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51: 891–898.PubMedCrossRefGoogle Scholar
  11. 11.
    Manabe, N., Y. Azuma, M. Sugimoto, K. Uchio, M. Miyamoto, N. Taketomo, H. Tsuchita, and H. Miyamoto. 2000. Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. The British Journal of Nutrition 83: 197–204.PubMedGoogle Scholar
  12. 12.
    Balon, T.W., A.P. Jasman, and J.S. Zhu. 2002. A fermentation product of Cordyceps sinensis increases whole-body insulin sensitivity in rats. Journal of Alternative and Complementary Medicine 8: 315–323.CrossRefGoogle Scholar
  13. 13.
    Koh, J.H., J.M. Kim, U.J. Chang, and H.J. Suh. 2003. Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biological & Pharmaceutical Bulletin 26: 4–87.Google Scholar
  14. 14.
    Chiou, W.F., P.C. Chang, C.J. Chou, and C.F. Chen. 2000. Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sciences 66: 1369–1376.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuo, C.-F., C.-C. Chen, Y.-H. Luo, R.Y. Huang, W.-J. Chuang, C.-C. Sheu, and Y.-S. Lin. 2005. Cordyceps sinensis mycelium protects mice from group A streptococcal infection. Journal of Medical Microbiology 54: 795–802.PubMedCrossRefGoogle Scholar
  16. 16.
    Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Shah, Z.A., K. Namiranian, J. Klaus, K. Kibler, and S. Dore. 2006. Use of an optimized transient occlusion of the middle cerebral artery protocol for the mouse stroke model. Journal of Stroke and Cerebrovascular Diseases 15: 133–138.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, E.J., H.Y. Chen, T.S. Wu, T.Y. Chen, I.A. Ayoub, and K.I. Maynard. 2002. Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia I Sprague–Dawley rats. Journal of Neuroscience Research 68: 636–645.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu, J.A., C.Y. Hsu, T.H. Liu, E.L. Hogan, P.L. Perot Jr., and H.H. Tai. 1990. Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury. Journal of Neurochemistry 55: 907–912.PubMedCrossRefGoogle Scholar
  20. 20.
    Cai, Z., Y. Pang, S. Lin, and P.G. Rhodes. 2003. Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Research 975: 37–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Muir, K.W., P. Tyrrell, N. Sattar, and E. Warburton. 2007. Inflammation and ischaemic stroke. Current Opinion in Neurology 20: 334–342.PubMedCrossRefGoogle Scholar
  22. 22.
    Won, S.Y., and E.H. Park. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. Journal of Ethnopharmacology 96: 555–561.PubMedCrossRefGoogle Scholar
  23. 23.
    del Zoppo, G.J., G.W. Schmid-Schonbein, E. Mori, B.R. Copeland, and C.M. Chang. 1991. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22: 1276–1283.PubMedCrossRefGoogle Scholar
  24. 24.
    Hartl, R., L. Schurer, G.W. Schmid-Schonbein, and G.J. del Zoppo. 1996. Experimental antileukocyte interventions in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 16: 1108–1119.PubMedGoogle Scholar
  25. 25.
    Chopp, M., R.L. Zhang, H. Chen, Y. Li, N. Jiang, and J.R. Rusche. 1994. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25: 869–875.PubMedCrossRefGoogle Scholar
  26. 26.
    Abraham, E. 2000. NF-kappaB activation. Critical Care Medicine 28: 100–104.CrossRefGoogle Scholar
  27. 27.
    Berti, R., A.J. Williams, J.R. Moffett, S.L. Hale, L.C. Velarde, P.J. Elliott, C. Yao, J.R. Dave, and F.C. Tortella. 2002. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia–reperfusion brain injury. Journal of Cerebral Blood Flow and Metabolism 22: 1068–1079.PubMedGoogle Scholar
  28. 28.
    Lindsberg, P.J., O. Carpén, A. Paetau, M.L. Karjalainen-Lindsberg, and M. Kaste. 1996. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 94: 939–945.PubMedGoogle Scholar
  29. 29.
    Jiang, M.H., T. Kaku, J. Hada, and Y. Hayashi. 1999. 7-Nitroindazole reduces nitric oxide concentration in rat hippocampus after transient forebrain ischemia. European Journal of Pharmacology 380: 117–121.PubMedCrossRefGoogle Scholar
  30. 30.
    Iadecola, C., C. Forster, S. Nogawa, H.B. Clark, and M.E. Ross. 1999. Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta Neuropathologica 98: 9–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zhenquan Liu
    • 1
  • Pengtao Li
    • 1
  • Dan Zhao
    • 1
  • Huiling Tang
    • 1
  • Jianyou Guo
    • 2
    Email author
  1. 1.School of Basic Medical SciencesBeijing University of Chinese MedicineBeijingChina
  2. 2.Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina

Personalised recommendations